

WP 9 Instrumentation: Detectors

Task 9.4.1

Resistive Plate Chambers (RPCs) Development Status

LIP (PT)

Alberto Blanco Andrey Morozov Paulo Fonte Luís Lopes <u>Luís Margato</u> Jan Michele ^(a) Andreas Neiser ^(a)

Michael Traxler ^(a)

A. Mangiarotti ^(b)

(a) TRB Collaboration

(b) IFUSP, Institute of Physics, University of São Paulo, Brazil

TUM (DE)

Karl Zeitelhack

ESS (SE) Irina Stefanescu

SINE 2020 Detector RTD Meeting, Wednesday 7th September 2016, Coimbra

Evaluate the potential of ¹⁰B coated RPCs for high resolution PSNDs

- Design Optimization, Prototyping and Evaluation
 - MC SIMULATION: GEANT4 and ANTS2 package (open source) <u>http://coimbra.lip.pt/ants/ants2.html</u>
 - **PROTOTYPE**:
 - Design and assembly ¹⁰B₄C coated RPCs
 - Explore RPCs in Multilayer configurations Toward High Detection Efficiency, e.g. the Multi-gap RPC
 - FEASIBILITY STUDIES, e.g.: Efficiency; Position resolution; Count rate and gamma sensitivity.
 - FUNDAMENTAL STUDIES e.g.: RPCs operation with HIPs (e.g. 4He and 7Li); Seek for different signal signatures (PSD techniques) for gamma's and thermal neutrons; gas mixtures composition;
 - 2D POSITION SPATIAL RESOLUTION

Previous Results

Feasibility tests of a ¹⁰B4C coated Hybrid RPC in the monochromatic thermal neutron beam CT2 (λ=2.5Å) at ILL (*In the framework of an Exploratory Project Funded by FCT*)

Plateau measurement

RPC2: Cathode coated with 10B4C layer (2µm thick)

Previous Results

DAQ System: 64 channels Data Acquisition System based on MAROC3 ASIC from Omega

Control and data analysis Software (developed at LIP):

- LULAS (LIP Ultra-Light Acquisition Software) for the board control
- ANTS2 for Data Analysis

http://coimbra.lip.pt/ants/ants2.html

Feasibility tests of a ¹⁰B4C coated Hybrid RPC in the monochromatic thermal neutron beam CT2 (λ=2.5Å) at ILL (*In the framework of an Exploratory Project Funded by FCT*)

Spatial Resolution (1D) FWHM ~ 0.8 mm (including the Slit width ~ 0.5 mm)

Good evidence for sub-millimeter resolution capability

COG of 3 neighboring strips with the highest signal Moving stage step: **0.6 mm**

High neutron detection efficiency with ¹⁰B solid converters: Multilayer configuration are needed (or grazing angles)

RPCs configurations forseen for evaluation

Stack of double-gap RPCs (Two anodes sharing the same cathode coated with ¹⁰B4C on both sides)

- Two anodes sharing the same cathode (AI) coated with ¹⁰B4C on both sides
- B4C coatings into AI substrates → Established technique
- Challenge: 2D readout on the same plane

Double gap RPC Thickness: 1.5 – 2 mm

Stack of 10 Double gap RPCs (20 layers of ¹⁰B4C) 15 - 20 mm

High neutron detection efficiency with ¹⁰B solid converters: Multilayer configuration are needed (or grazing angles)

RPCs configurations forseen for evaluation

Multi-gap RPC

- Leads to very modular and compact designs
- Small mass thickness (minimization of neutron absorption and scattering in detector materials)
- Challenges: ¹⁰B4C coatings deposited onto resistive substrates (e.g. soda lime glass, ceramics) must show
 - Good adhesion properties
 - High surface resistivity (> $10^6 \Omega$ /)

Particle stack (one

Add particle Track particles on stack

Both RPCs configurations needs optimization

FROM ANTS2 Calculations it was found a significant dependence of the profiles of the Ranges and Energy deposits with the gas-gap width of the RPC

Deposited energy in the gas-gap (C2H2F4 @ 1 atm) for the 4He and 7Li fissions fragments

SINE 2020 Detector RTD Meeting, Wednesday 7th September 2016, Coimbra

Add particle Track particles on stack

Both RPCs configurations needs optimization

FROM ANTS2 Calculations it was found a significant dependence of the profiles of the Ranges and Energy deposits with the gas-gap width of the RPC

10B4C thickness = 2.0 μ m; λ = 4.7 Å; C2H2F4 @ 1 atm

Distributions for the Range Projected in the direction parallel to the RPC plates

□ Design and Building of two ¹⁰B4C coated RPCs with different gas-gap widths

- RPC-1: 1mm
- RPC-2: 0.35mm
- Implementation of a 2D Position encoding based on two arrays of parallel signal pick-up strips, mutually orthogonal, facing the glass electrode

\Box Evaluation of the two RPCs in TREFF neutron beamline (λ =4.7Å) at TUM – FRM II

- Plateau and efficiency measurements
- RPC with inverted Polarity (emulation of the ¹⁰B4C layer on the anode) to access the possibility of have two layers of ¹⁰B4C per gas-gap (check if there is a significant loss of efficiency)
- Test of the F.E.E /DAQ (TRB) from the RPC group at Coimbra in the acquisition of induced signals from thermal neutron events

Two ¹⁰B4C coated RPCs Designed and Assembled at LIP

- Cathode : 1mm thick AI plate (80 mm x 80 mm) coated with ¹⁰B4C (2 μm thick)
- Anode: 0.35mm thick soda lime glass plate (80 mm x 80 mm)

1st Tests at TREF neutron beamline in TUM-FRM II

Tests at TREF/FRMII neutron beam line λ 4.7 Å

Plateau for RPC-1 and RPC-2

Detection Efficiency

3He-PC / RPC-2

RPC2: HV=2300V

RPC2: HV=2350V

RPC2: HV=2400V

2000

3000

3He-PC: Count Rate (Hz)

4000

5000

—ANTS2 (4,7 Å)

RPC-2 : 2D Spatial Resolution

SINE 2020 Detector RTD Meeting, Wednesday 7th September 2016, Coimbra

1000

20

n Efficiency (RPC-2) 01 51

Detection 5

0

0

Work in progress

- □ Charaterization of the *gamma sensitivity* of the two RPCs tested in TUM-FRMII with ²²Na and ⁶⁰Co gamma sources at LIP
- Acquisition and analysis of the waveforms of the Fast and Slow component of the induced signals
 - Look if there is any significant difference in the time structure of different kind of events (different nature of the primary ionization, e.g. BKG, gammas and Alfa particles) that will make possible Pulse Shape Discrimination (PSD)

□ Design and Building a stack of double-gap RPCs

- Al-plates (100 mm x 100 mm) coated with 10B4C (1150 nm) on both sides already provided by the ESS Detector Coatings Workshop
- Considering the results from the test at FRM II we will go for narrow gasgap widths

Future

□ Building and evaluation of a Multigap-RPC) with thermal neutrons

A batch of soda lime glass plates (100mm x 100mm, 0.4mm thick) coated with ¹⁰B4C (1150 nm) exhibiting a surface resistivity > 1E6 Ω / was already provided by the ESS Detector Coatings Workshop – Until the present the coatings adhesion on glass remains stable

Future

□ MC SIMULATIONS (GEANT and ANTS2 packages) should proceed

Neutron transport considering absorption and scattering by materials in the beam path is being implemented in GEANT

The geometry is implemented and code is being tested to work with very thin volumes

WP 9 Instrumentation: Detectors

Thank you for your attention

Backup Slides

Multigap RPC

ANTS2 Simulations

Multigap RPC (10 gap's)

Deposited energy in the gas-gap (C2H2F4 @ 1 atm) for the 4He and 7Li fissions fragments :

×10³

1.8

1.6

1.4 1.2

1

0.8

0.6

0.4

0.2 -

0.2 0.4

0.6

0.8

- Gas-gap width: 0.35 mm
- Glass Thickness: 0.35 mm
- 10B4C coating thickness: 1150 nm
- Number of layers: x 10

 λ = 1.8 Å / Det. Efficiency~27,6 % Red: sum (⁴He+⁷Li) Blue: ⁴He Green: ⁷Li

 λ = 2.5 Å / Det. Efficiency~35,4% Red: sum (⁴He+⁷Li) Blue: ⁴He Green: 7Li

Deposited energy

DepEnergyHist

Entries 35383

349.6

208.7

 $\times 10^3$

Mean

RMS

1 1.2 1.4

Deposited energy, keV

ANTS2 Simulations

Multigap RPC (x10 gap's)

Ranges for the 4He and 7Li particles in the gas-gap (C2H2F4 @ 1 atm)

Distributions for the length of the Ranges projected in the direction parallel to the plane of the electrodes

- Glass Thickness: 0.35 mm
- 10B4C coating thickness: 1150 nm
- Number of layers: x 5

Backup Slide

Backup Slide

Typical gas mixture:

- Freon R134a (tetrafluoroethane): high electron affinity (electron capture ⇒ avalanche confinement);
- SF6 (sulphur hexafluoride): 1 to 10% (to suppress streamer discharges);
- C4H10 (Iso-Butane): 0 to 5% (to prevent photon induced streamers.

Timeline

	Year 1	Year 2	Year 3	Year 4
MC SIMULATIONS				
PROTOTYPE DESIGN ; 10B4C COATINGS MANUFACTURE				
BUILDING OF FIRST 10B4C COATED RPCs; EXPLORTORY TESTS				
STUDY 10B4C COATED RPCs OPERATION IN AVALANCHE MODE				
2D POSITION RECONSTRUCTION				
PROTOTYPE'S CHARACTERIZATION (Detailed Tests with a neutron beam and gamma sources); Report conclusions				