

J.-B. Mosset, A. Stoykov, M. Hildebrandt :: NUM :: Paul Scherrer Institut

Progress Report PSI: 2D neutron detectors based on ZnS:⁶LiF read out with WLS fibers and SiPMs

SINE2020 WP9, Coimbra, Portugal, September 2016

2D pixelated detector

- sensitive area of the prototype: (50 × 10) mm²
- Materials
 - ND2:1 ZnS:⁶LiF scintillator (Scintacor)
 - WLS fiber : Y11(400)M, Ø=0.25mm (Kuraray)
- Production
 - machining of 16 grooves in a 0.45mm thick strip
 - gluing of a single WLS fiber in the grooves
 - bending of the fiber at T ~ 60°C
 - gluing of a 0.25mm thick scint. strip on the top

XY-coding

- basic requirement for the pixels:
 the LY must to be split into two fibers
 - 2M photodetectors for M² pixels
 - for a uniform illumination of the matrix, the rate capability is limited by "diagonal" events
 - for a maximum event rejection of 0.1, the maximum rate per pixel is $0.1 / (\Delta c \times (M - 1)^2)$
 - To increase the rate capability:
 - · Reduce Δc
 - · Reduce M

True events arriving within the coincidence resolving time (Δc). The events have to be rejected (ambiguity concerning the position of the events: or or 2?)

Experimental setup for testing the prototype

- radioactive source :
 - ²⁴¹Am/Be neutron source in polyethylene moderator (absorption rate 8.7 Hz)
 - ⁶⁰Co γ-source (rate of 1.3 MeV γ through pixel = 10^4 1/s)
- Photosensors
 - 2 SiPMs (1.3 × 1.3)mm², MPPC S13360-1350PE (Hamamatsu)
 - overvoltage $\Delta U = 5.0V (2.0V)$
 - PDE~40% (25%) at 480 nm (emission peak of WLS fiber)

• Settings of the signal processing system:

shaping time = 0.25μ s, blocking time = 1μ s, coincidence resolving time = 0.5μ s

Signals (single channels)

- **G-Amp** : Gaussian amplifier (shaping time sh-time = 0.25µs)
- Discr SDi : leading-edge discriminator (threshold thrSDi)
- **Gen** : non-retriggerable monoflop (pulse width b-time = 4 · sh-time)

Signals (coincidences)

> 99% of events within this window

Multi-count ratio

Gamma sensitivity

Background rate

- General features:
 - · Gapless large-area detectors
 - · XY-coding of pixels arranged in 2D matrix
 - Use of small area SiPMs possible
 (~1mm² up to matrix dimension M = 10)
 - High rate capability due to small M
- Main performance parameters:
 - Detection efficiency at 1 Å (10 Å): 50% (57%)
 (absorption 80% (95%), trigger efficiency (60%)
 - Multi-count ratio: $< 10^{-3}$
 - γ sensitivity : < 10⁻⁷
 - Background rate: $< 10^{-3}$ Hz
 - · XY-coincidence resolving time : 0.5 μs
 - Count rate capability for a uniform illumination of the matrix: 2.5 kHz / pixel (for M = 10)

--> Satisfy requirements for NPD detectors at ESS

Page 10

2D detector based on light sharing

- ZnS:⁶LiF detection unit
 - sensitive area (2.4 \times 200) mm²
 - · WLS fibers with short attenuation length ($\lambda \approx 15$ cm) from Kuraray
 - fibers are read out on both sides with SiPM

Position reconstruction method

• Calculation of the average asymmetry measured at different positions X.

$$\langle asymmetry(x_i) \rangle = \langle \frac{A_L(x_i) - A_R(x_i) \cdot \gamma}{A_L(x_i) + A_R(x_i) \cdot \gamma} \rangle \quad \text{where} \quad \gamma = \langle \frac{A_L(L/2)}{A_R(L/2)} \rangle$$

- γ factor --> corrects for possible left / right difference of the readout gain and the optical coupling
- fit of the average asymmetry curve with

fit of the average asymmetry curve with
where
$$att_{L}(x) = \frac{I_{long} \cdot e^{-x/\lambda_{long}} + I_{short} \cdot e^{-x/\lambda_{short}}}{I_{long} + I_{short} \cdot e^{-x/\lambda_{short}}} \begin{cases} f_{asym}(x) = \frac{att_{L}(x) - att_{R}(x)}{att_{L}(x) + att_{R}(x)} \\ (\lambda_{long}, \lambda_{short}, I_{long} \text{ and } I_{short} \text{ are free parameters}) \end{cases}$$

position reconstruction of individual events with $f_{position}(asym) = f_{asym}^{-1}(x)$ ٠

Anomaly observed with the 3-fiber prototype

- we suspect that one of the fiber has an "optical defect" at $x \approx 2$ cm:
 - \cdot non-uniform PMMA concentration in the core \cdot crack (to be confirmed with a lateral scan of the bar with a linear and collimated α -source)
- only events with an asymmetry in the left peak are selected

Results

- High light yield is crucial for
 - spatial resolution
 - trigger efficiency
- LY ratio between 8-fiber and 3-fiber proto = 1.4
- At the same trigger efficiency, the 3-fiber proto has a better spatial resolution than the 8-fiber proto
 - --> the 8-fiber proto might have one or more fibers with an "optical defect".

Next step

- test of a new structure
- expected LY: more than twice higher as for the 3-fiber prototype (fiber density is twice --> average distance to a groove is half)
- quality control of the fibers before manufacturing regarding *cracks* and *uniformity of the attenuation length* (with LED)

	3-fiber proto	8-fiber proto	New geometry
Fiber density (fiber / mm²)	1.79 💼	4.17 😬	3.70 °
Max. distance from a point in the scintillator to a groove (mm)	0.35 😶	0.25 😬	0.21 😶
Fiber distribution in the sensitive volume			
Production			

Annex: dead time (estimate with multi-counts)

- Time distribution of second triggers (multiple counts) in respect to the first trigger (main event). Allows to obtain an upper limit (~ 1.7µs) on the dead time.
- More close* estimate is $\Delta d \approx 6 \cdot \text{sh-time} \approx 1.5 \mu \text{s}$
- Count rate capability for a uniform illumination of a row or column: 6.5 kHz / pixel ($N_{max} = 0.1 / (\Delta d \times M)$)

Annex: neutron absorption probability (MC simulation)

Input conditions

- scintillator matrix of dimension M (M large enough to follow scattered neutrons)
- incoming neutrons ($\lambda = 0.5 10$ Å) uniformly distributed within central pixel

To be calculated

- absorption probability
- spatial resolution

•

•

- ⁶Li and hydrogen concentration in the materials of the sensitive elements
 - ZnS:⁶LiF scintillator ND2:1 (Scintacor)
 - → ⁶Li atoms 1.4 · 10²² cm⁻³
 - ➔ hydrogen in organic binder 2.4 · 10²² cm⁻³
 - WLS-fibers Y11(400)M (Kuraray)
 - → hydrogen 4.8 · 10²² cm⁻³
 - Optical glue EJ500 (ELJEN)
 - → hydrogen 5.4 · 10²² cm⁻³

Annex: absorption

- high absorption probability in the matrix as a whole (≥ 80% at 1Å)
- due to scattering, some neutrons are absorbed in "wrong" channels
 --> degradation of the spatial resolution

Annex: spatial resolution along X

Annex: spatial resolution along Y

Annex: Model for a 20 cm long detection bar

Remark: In this model, the trigger condition is $(A_{left} > thr.) || (A_{right} > thr.)$

- At the central position, the first bins of the amplitude spectrum (before the discrimination threshold) are filled according to a linear extrapolation of the distribution.
- A polynomial function convoluted with a poisson distribution is fitted on this spectrum.
- All other spectra are fitted with the same function. Only an horizontal scale factor and a normalisation factor for the area are kept free. $\int_{1}^{2000} f = f = \frac{(A)}{dA}$
- The trigger efficiency is calculated as :

trig. eff. =
$$\frac{\int_{0}^{2000} f_{extrapolation}(A) dA}{\int_{0}^{2000} f_{extrapolation}(A) dA}$$
Page 23

Annex: 8-fiber prototype, correlection plot

Annex: 8-fiber prototype, asymmetry spectra

Annex: 8-fiber prototype, amplitude spectra (readout gain ~ 5mV/photon)

Annex: 3-fiber prototype, asymmetry spectra (clean data)

Annex: 3-fiber prototype, amplitude spectra (readout gain ~ 5mV/photon, clean data)

