Development of a WLS fibre detector at ISIS for reflectometry WP 9.2.1

G. Jeff Sykora, Erik Schooneveld, Nigel Rhodes

SINE2020 Meeting 13 January 2016

Reflectometers on ISIS

Reflectometry Village

Reflectometer requirements on ISIS

Linear PSD

- 0.5mm position resolution preferable
- High efficiency
- ▶ 0.5 15 Å range
- Good uniformity
- ~300 mm linear coverage
- High rate capability
- Large dynamic range

Current WLSF detectors for Reflectometry on ISIS

- ➢ ⁶LiF/ZnS:Ag
- Linear PSD
- 0.5mm position resolution
 - > 0.5mm fibre on 0.5mm pitch
 - > 768 fibres
- 380 mm linear coverage
 - Continuous scintillator
- 16 ch MAPMT readout 192 PMT channels

Current WLSF detectors for Reflectometry on ISIS

Walking coincidence fibre code

Only 2-3 PMTs see light from neutrons locally

Offspec

CRISP

Science & Technology Facilities Council

Larmor

CRISP

800

Science & Technology Facilities Council

✓ 0.5mm FWHM resolution

- ✓ 0.5mm FWHM resolution
- Signal processing algorithm reduces ghosting

Larmor

- ✓ 0.5mm FWHM resolution
- Signal processing algorithm reduces ghosting
- ✓ Uniformity better than 10%

Ratio of WLSF detector to high rate monitor
 Ratio taken at peak of ToF

Data from the reflectometer functioning on Offspec

Reflectivity

2D Reflectometer and GISANS

- 1 x 1mm² acceptable
- > 0.5 x 0.5mm² preferable
- Varying areas/angular coverage
- ➤ 0.5 15 Å range
- Large dynamic range

- Continuous scintillator and MAPMTs
- Imm fibres on Imm pitch
- ▶ 128mm x 128mm
- Coded: 96 MA-PMT pixels (768 fibre ends)
- Unusual design: 3 layers 2*X + 1 Y

- Continuous scintillator and MAPMTs
 1mm fibres on 1mm pitch
 Coded: 96 MA-PMT pixels (768 fibre ends)
 Unusual design: 3 layers 2*X + 1 Y
- ✓ 1mm resolution

- Continuous scintillator and MAPMTs
 1mm fibres on 1mm pitch
 Coded: 96 MA-PMT pixels (768 fibre ends)
 Unusual design: 3 layers 2*X + 1 Y
- ✓ 1mm resolution

- Walking coincidence fibre code
- Few PMTs see light in Y-direction
- Many PMTs see light in X

Reflectometer requirements on ISIS

- ✓ Linear or 2D PSD
- ✓ 1-0.5mm position resolution
- ✓ High efficiency
- ✓ 0.5 15 Å range
- ✓ Good uniformity
- ✓ ~300 mm linear coverage
- High rate capability
- Large dynamic range

Focus of SINE2020

✗ High rate capability

Focus of SINE2020: Increase global rate capability

- Sacrifice efficiency for rate (higher thresholds)
- New scintillator
- Many inefficient isolated layers
- Limit area of exposed scintillator viewed by the fibres
 - Without drastically increasing cost
 - Without reducing performance

Current style:

Worst case: 16 kHz/mm²

Dead timing 2 fibres in X and 2 in Y Cannot enlarge beam Off specular reflections ok if θ and ϕ are different (x \neq y in detector coordinates)

- Single fibre read-out (uncoded)
 - Factor 2 gain in each direction Not enough
- > 0.5mm fibre
 - Factor 2 gain in each direction Not enough

Single fibre: 16 kHz/mm²

Dead timing 1 fibre in X and 1 in Y Cannot enlarge beam Off specular reflections ok if θ and ϕ are different

Single 0.5 mm fibre: 32 kHz/mm²

Dead timing 1 fibre in X and 1 in Y Cannot enlarge beam Off specular reflections ok if θ and ϕ are different

- Single fibre read-out
- > 0.5mm fibre
- Fibres oriented 45° to beam shape

Single 0.5 mm fibre: 32 kHz/mm² (still 16 kHz per fibre)

Dead timing 2 fibres Can enlarge beam! Off specular reflections ok if $\theta \neq \phi$

- Single fibre read-out
- > 0.5mm fibre
- Fibres oriented 45° to beam shape
 - ≻ Gain $\propto N_{fibres}$

4 mm x 1 mm beam 16 kHz per fibre maximum

Dead timing 4 fibres in each axis
Can enlarge beam!
Off specular reflections ok if θ ≠φ
but getting worse

- Single fibre read-out
- > 0.5mm fibre
- Fibres oriented 45° to beam shape
 - \succ Gain $\propto N_{fibre}$

Example 1: 4mm x 1mm direct beam Largest fibre area exposed = 0.5mm² 16 kHz on 1 fibre = 32 kHz/mm² Total rate = 128 kHz

Example 2: 30mm x 1mm direct beam

Largest fibre area exposed = 0.5mm²

16 kHz on 1 fibre = 32 kHz/mm²

Total rate = 960 kHz

Example 3: 30mm x 4mm direct beam

Largest fibre area exposed = 2 mm^2

16 kHz on 1 fibre = 8 kHz/mm²

Total rate = 960 kHz

Potential for ghosting!

Fibre support mechanics

Fibre support mechanics

Effect of light spread with a diamond pixel

- Fibre support mechanics
- Effect of light spread with a diamond pixel
- Signal processing and positioning algorithm

- Fibre support mechanics
- Effect of light spread with a diamond pixel
- Signal processing and positioning algorithm
- Economising
 - > 2 fibre layers
 - Increase fibre pitch interpolate

- Fibre support mechanics
- Effect of light spread with a diamond pixel
- Signal processing and positioning algorithm
- Economising
 - > 2 fibre layers
 - Increase fibre pitch interpolate
- Optimised signal processing for rate

Fibre support mechanics

- Effect of light spread with a diamond pixel
- Signal processing and positioning algorithm
- Economising
 - > 2 fibre layers
 - Increase fibre pitch interpolate
- Optimised signal processing for rate
- Impact of diamonds on scientific data

- 1. Build small prototype detector to test 2 fibre layer feasibility
- 2. Build a 64mm x 64mm prototype detector
 - i. Design and develop 45° fibre support mechanics
 - ii. Use uncoded fibre readout
 - iii. Produce assembly mechanics
- 3. Develop firmware for positioning events
- 4. Develop signal processing for improving rate

Thank You!

