GE Oil & Gas – Reuter-Stokes

GE Reuter-Stokes

Jonathan Voss Dr. Mathieu Boucher

June 13, 2017

Our People - Twinsburg, OH Facility

OSHA VPP Star GE eCO2 certified HealthAhead ISO 9001 10 CFR 50 App B ASMF Sec. III 200 EEs Non-union 163'000 ft² 100 acres

Reuter-Stokes key milestones

Reuter Stokes Measurement Solutions

Technologies for Harsh Environments

Nuclear Instrumentation

Neutron Monitoring
In-core power monitoring
Ex-core power monitoring
Gamma Thermometer

Radiation Measurements

Homeland Security

Safeguards

Scattering
Environmental monitoring

 $^3\mathrm{He}$ recycling

³He Detectors Oil exploration

Geo-steering

Turbine Instruments

Flame detection sensor
- SiC technologies

Reuter Stokes Measurement Solutions

Technologies for Harsh Environme

Nuclear Instrumentation

Neutron Monitoring In-core power monitoring Ex-core power monitoring Gamma Thermometer

Radiation Measurements

Homeland Security

Safeguards

Scattering

Environmental monitoring

 $^3\mathrm{He}\ \mathrm{recycling}$

Drilling Tools

³He Detectors

Oil exploration

Geo-steering

Turbine Instruments

Flame detection sensor
- SiC technologies

Radiation Measurement Solutions

60 Years of Experience

- Over 10.000 neutron counter designs manufactured
- ³He gas-filled detectors multiple designs
- ¹⁰B lined detectors reactor power monitoring
- BF₃ gas-filled detectors
- High pressure ion chamber
- Scintillator packaging for harsh environments (O&G)
- ³He recovery and purification

Core Competencies

- Harsh Environment Packaging
- · Handling Sensitive Materials
- Radiation Detection
- Precision Fabrication

RS Skills

- Brazing, welding Long lived
- Integrated electronics
- Radioactive Sources
- Hygroscopic materials
- NRC compliance / DOT shipping regulations
- neutron
- γ radiation
- Ultraviolet
- Thin metal welding
- Coatings electroplating and boron
- thin wire and cable processing
- Environmental testing
- Position calibration 🗇 > 🔻 🖹 > 🔻 🖹 >

Radiation Measurement Solutions

60 Years of Experience

- Over 10,000 neutron counter designs manufactured
- ³He gas-filled detectors multiple designs
- ¹⁰B lined detectors reactor power monitoring
- Blagge filled latertors
- High pressure ion chamber
- Scintillator packaging for harsh environments (O&G)
- ³He recovery and purification

Core Competencies

- Harsh Environment Packaging
- Handling Sensitive Materials
- Radiation Detection
- Precision Fabrication
- Product Testing & Modeling

³He Detector

$${}_{2}^{3}$$
He $+{}_{0}^{1}$ $n \longrightarrow {}_{1}^{3}$ $H(0.191 \,\text{MeV}) + {}_{1}^{1}$ $p(0.573 \,\text{MeV})$
 $\alpha = 5330 \,\text{barns}$ at $0.025 \,\text{eV}$

Detector: Construction

- Metallic outer housing
 - Small diameter anode
 - Proportional fill gas
 - Welded and brazed construction
 - Optimized ³He pressure for desired efficiency
- Optimized size for instrument applications

Operation

- Well understood principles
- Neutron captured by ³He nucleus
- Gamma response primarily from interaction with detector wall
- Charge sensitive electronics
- Well defined spectrum

³He Detector

$${}_{2}^{3}He + {}_{0}^{1} n \longrightarrow {}_{1}^{3} H(0.191 \, \text{MeV}) + {}_{1}^{1} p(0.573 \, \text{MeV})$$

 $\alpha = 5330 \, \text{barns} \text{ at } 0.025 \, \text{eV}$

Detector: Construction

- Metallic outer housing
 - Small diameter anode
 - Proportional fill gas
 - Welded and brazed construction
 - Optimized ³He pressure for desired efficiency
- Optimized size for instrument applications

Operation

- Well understood principles
- Neutron captured by ³He nucleus
- Gamma response primarily from interaction with detector wall
- Charge sensitive electronics
- Well defined spectrum

GE Measurement & Control – $\frac{3}{2}$ He Detectors

Available Sizes

Detector Diameter:

△ from 8mm

 \rightarrow up to 5 inches (\sim 11cm)

Detector sizes (active length):

 \rightarrow 8 mm \rightarrow up to 41 inches

Aluminum: $\min_{\varnothing} = \frac{1}{2}$ "

Fill pressure

 $0.1 \text{ atm} \leqslant \text{stainless steel} \leqslant 30 \text{ atm}$ The maximum fill pressure for aluminum is 15 bar.

For shipping purposes, all detectors must be certified up to $4 \times$ the fill pressure.

Materials of construction

Stainless steel:

 \rightarrow Background: $2.9 \times 10^{-4} \frac{\text{cps}}{\text{cm}^2}$

Aluminum:

 \rightarrow Background: $2.9 \times 10^{-3} \frac{\text{cps}}{\text{cm}^2}$

Detector Type

→ PSD

Connector

→ HN, MHV, SHV, Lead wire

Every detector is custom made

Introduction and History System Overview 8-pack Overview Networking Standards Communication Protocols

Introduction and History

- 2007 GE's Reuter-Stokes licensed electronics from SNS,
- Based on non-proprietary, existing network standards,
 - → achieve higher data rates,
 - improved reliability,
 - → significant simplification in the overall system interconnections and cables, and
 - → off the shelf network devices.

System Overview 8-pack Overview Networking Standards

Introduction and History

System Overview

- Fully scalable system and electronics
- Network Routers
 - L IEEE 1588-2008 PTP.
 - Li IEEE 802.3af POE,
 - → No. of routers depends on system size.
- Power ⇒ PoE

- Grandmaster clock

 - typically uses a GPS clock.
- Timestamper
 - → provided by GE,

 - □ absolute time measurement,
 - → version of the RSPP

8-pack Overview

- ³He PSD,

 - → various detector lengths, diameter, and sensitivity.
- Decoupling Capacitors.
- Preamplifiers,
- ADCs,

 - wery fast and highly accurate,

- \rightarrow digitizing pulses at 10^7 samples/s.
- Platform Processor.
- Waveform Digitization can compensate:
 - baseline drift,
 baseline drift,

 - $\rightarrow \gamma$ /neutron discrimination.

Introduction and History System Overview 8-pack Overview

Networking Standards

- POE,
 - → IEEE-802.3.at-2009 (POE+)
 - \downarrow up to 25.5 W for 48-44 VDC range,
 - → no need for extra power cable,
 - power isolated ⇒ minimize ground loop issues
- PTP,
- TCP,

- → all event data,

- higher rates could be achieved with faster network.
- UDP.
 - discover mechanism ⇒ which modules are on network,

Communication Protocols

Introduction and History System Overview 8-pack Overview Networking Standards

Communication Protocols
Compatible with:

- EPICS
- ADARA

- Development of Multi-MHz detector array, in partnership with JCNS
 - \rightarrow 18 \times 8-pack of three (3) different length,
 - $\stackrel{\cdot}{\mathrel{\mathrel{\;\;\sqcup}\;}} 2 \times \mathsf{GB}$ routers.
 - ☐ Grandmaster clock,

http://www.fz-juelich.de/SharedDocs/Meldungen/JCNS/EN/2015/2015-11-06-SANS-2-Detector.html

- Development of Multi-MHz detector array, in partnership with JCNS
 - \rightarrow 18 \times 8-pack of three (3) different length,
 - \rightarrow 2 × GB routers,
 - □ Grandmaster clock,

http://www.fz-juelich.de/SharedDocs/Meldungen/JCNS/EN/2015/2015-11-06-SANS-2-Detector.html

System Characteristics

- 0.9m 2 array of 8mm 3_2 He detectors \downarrow $\eta \sim 85\%$ for 5Å
- dead-time constant of 25ns
- count rate as high as 5MHz with 10% deadtime
- $25\times$ improvement compared to old detector

To improve the read-out characteristics and reduce noise, the electronics is mounted in a closed container at the rear of the detector.

http://www.fz-juelich.de/SharedDocs/Meldungen/JCNS/EN/2015/2015-11-06-SANS-2-Detector.html

Syste

- 0.9r

 $\vdash \eta$

dead

– coui time

 $-25 \times$

To red clo

http://www 2015-11-06

GE Reuter-Stokes measurement solutions

individual He-3 detectors

individual B-10 detectors

- individual B-10+ detectors

- detector array, with mounting frame

NeuAcq® data acquisition electronics

GE's Reuter-Stokes can assist for your measurement solution, from individual detectors to turnkey solutions.

¹⁰₅B Detector

$$n + {}^{10} B \rightarrow \alpha + {}^{7} Li(4\%)$$

 $n + {}^{10} B \rightarrow \alpha + {}^{7} Li^{*}(96\%) + 0.49 \text{ MeV}$
 $\sigma = 3840 \text{barns @ } 0.025 \text{ eV}$

Detector: Construction similar to ³He

- Metallic outer housing
 - Small diameter anode
 - Proportional fill gas
 - Welded and brazed construction

$^{10}_{5}$ B Lining: organic formulation

- Thin layer on internal shell
- Optimize coating thickness
- Use boron enriched in ¹⁰₅B isotope

Operation: new design

- ullet Same physics principles as ${}^3_2{
 m He}$
- Charge sensitive electronics
- Well defined spectrum
- Validated through use in nuclear reactor instrumentation

$_{5}^{10}$ B Detector

$^{10}_{5} \text{B}$ Coating Optimization

Thickness: optimize neutron counting

Too thin: fewer neutron reactions/higher probability of reaction products escaping into detector volume

Too thick: more neutron reactions/reaction products absorbed in lining

B10Plus+® Neutron Detector

How does it work?

B10Plus+® is:

GERS $^{10}_{5} \rm B$ lined proportional counter incorporates a small amount of $^{3}_{2} \rm He$

= boost neutron sensitivity

B10Plus+ "Superpack"

B-10 lined detector $+\frac{1}{2}$ atm 3 He

4 rows deep

Optimized design using GEANT4

- Gas fill composition

45.4% absolute efficiency (PuBe source, 25 mm collimator) equivalent to 3 atm He-3 8-pack

GERS outlook

Gamma Scintillator Packages for downhole operation CeBr₃ crystals

NeuAcq® upgrade

higher count rate capability

ightharpoonup more channels per plateform processor \Rightarrow cheaper system

change in GE philosophy

 $\,\,\,\,\,\,\,\,\,\,\,\,\,$ possibility to lease larger system from GE's Reuter-Stokes

GE's Reuter-Stokes recognizes the need for better position resolution in scattering detector arrays

Neutron Coincidence Counter

B10Plus+® UNCL

- Four footprints were considered,
- Cavity dimensions configured for PWR fuel rod bundles $(23.4cm \times 23.4cm)$.
- 85 configurations were simulated using GEANT4, with a 252 Cf source at CoG,
- The number of detectors and quantity of $\frac{3}{2}$ He gas were minimized to reduce cost and conserve $\frac{3}{2}$ He.

- (a) existing UNCL design.
- (b) based on the UNCL, with up to 2 additional rows of detectors.
- (c) and (d) are designed to maximize the number of detectors nearest the cavity.

Neu

Variables in GEANT4 simulations

В

– Fo

– Ca

– 85 GI

– Tł ga se Detector diameter

→ 25 mm - 28.6 mm

∟ 25mm

Moderator thickness

→ 9 mm – 14 mm

∟ 14mm

Thickness of moderator in front of first row

→ 6.35 mm – 19.1 mm

→ 12.7mm

- Thickness of moderator between rows

→ 6.35 mm – 12.7 mm

→ 12.7mm

- Active length

→ 14 inch – 24 inch

→ 18 inch

- ${3 \atop 2}$ He partial pressure

□ 0 atm – 1 atm

□ 0.5 atm (inner row), 0.25 atm (outer row), 4.9 litres total

- $^{10}_5 \mathrm{B}$ coating loading

 $\stackrel{\downarrow}{\sim}$ 0.1 mg/cm² - 0.55 mg/cm² $\stackrel{\downarrow}{\sim}$ 0.24 mg/cm²

UNCL design.

on the UNCL, with ditional rows of de-

are designed to maxnumber of detectors cavity.

GE imagination at work