

since 2006

a university spin-off dedicated to neutron detector technology CDT GmbH Hans-Bunte-Str. 8-10 69123 Heidelberg Germany

www.n-cdt.com

CDT CASCADE Detector Technologies GmbH

- Founded in 2006 as spin-off of Physikalisches Institut Heidelberg
- Current work: ¹⁰B based area detectors for thermal and cold neutrons as complete system solutions with electronics, firmware and software
- More generally: We consider ourselves as experts for
 - neutron detector systems,
 - the related specialized engineering and 3D-CAD and
 - the realization of high quality and cost effective serial manufacturing.
 - Customers: FRM-II, FZJ, ESS, PSI, ILL, KIT (IBR-II), IHEP (CSNS, China), KEK & JAEA (Japan) via REPIC, KACST (Saudi Arabia) and others

Current Products

- JALOUSIE detector, the alternative for ³He PSDs
 → large areas, medium resolution
 → POWTEX, DREAM, ...
- CASCADE 2D-200 a high rates GEM-based solution with extraordenary contrast of 10⁵

 \rightarrow expansion to 2D-300 (300 x 300mm²)

- CASCADE-MIEZE a special variation to resolve 1MHz intensity variations
- CASCADE-BM position sensitive Beam Monitors
- CASCADE-IBM neutron ionization beam monitoring of extreme robustness
- UCN detectors
- ASIC and FPGA-based multi-channel readout electronics

recently also WLSF-Detectors - Cooperation with FZJ ZEA-2

Technologies Portfolio: Developments

Specification	Value (Goal Specifications)	
Developer: Project time	ZEA-2: 2013 - 2016	
Detector Main Technology	A grid of 192 x 128 WLSF yielding 2 mm pitch (1 mm thickness), sandwiched between 2 scintillator plates. Each WLSF is connected to an anode (64 anodes per module) of one of the five H7546 multi-anode PMTs per detector. Four detector modules have been built and partially characterized in a beam of thermal neutrons.	
Scintillator	500 μm thick ZnS-Ag/ ⁶ LiF	
Prototype active area	390 x 260 mm²	
Number of output channels	320	
Number of detector spatial units (pixels)	192 × 128	
Max. spatial resolution	4 x 4 mm²	
Max. count-rate	Tbd	
Neutron Det. Efficiency	$> 62 \% (\lambda_n = 1.1 \text{ Å})$	
n-y Discrimination	10-5	
Max. Magnetic Field	Not an issue	
Power Consumption	Approx. 120 W per segment	
Project status ZEA-2	Available and proven for development	

IÜLICH

CDT prepared for Contract Manufacturing

- With our expertise and experience on mechanics in the neutron detector field we do have interest in manufacturing detectors along third party designs.
- Such engagement allows us to equilibrate occupancy of personnel more efficiently
- If desired, we may add our readout electronics and system competence.

CDT Business Resources

- Equity capital: currently ~ (200 + 100) TEuro
- Current human resources: 12 FTE with additional ext. engineering capacities.

© 2017 CDT GmbH

- High throughput, large area ${}^{10}B_4C$ coating facility at hand (~ 3,5 m²/day) (in cooperation with S-DH and recently Movatec), metallic Boron coating
- More than 5000 pre-ampflifier ASIC-dies (320k r/o channels) on stock to give long-term support to several instruments in parallel.

CDT

CASCADE Detector Technologies GmbH Hans-Bunte Str. 8-10 69123 Heidelberg, Germany

www.n-cdt.com

The ¹⁰B-based Jalousie Neutron Detector

Our solution for POWTEX (FRM-II) as alternative for ³He-filled PSD counter tubes

H. Conrad, Th. Brückel, W. Schäfer, J. Voigt, J. Appl. Cryst. **41**., 836 (2008). A. Houben, W. Schweika, Th. Brückel, R. Dronskowski, Nucl. Instr. and Meth. A **680**, 124 (2012).

CDT GmbH contracted by RWTH Aachen for concept, design and realization at FRM II, cooperation with FZJ/JCNS through JARA

Neutron detection with ¹⁰B converters

¹⁰B + n \rightarrow ⁷Li (1.02 MeV) + α (1.78 MeV) \rightarrow ⁷Li (0.84MeV) + α (1.47 MeV) + γ (0.48 MeV) (94%)

- ¹⁰B and ¹⁰B₄C are stable, inert (compared to BF₃) and non hygroscopic (as e.g. Li, BF₃)
- > 96% enriched ¹⁰B available (large industrial demands for ¹¹B)
- large charge-signal inside detector
- Ranges of α (3.14 µm) and ⁷Li (1.53 µm) limit single layer detection efficiency to ~ 5% for thermal neutrons at vertical incidence

6%)

3838 b (1.8 A)

Jalousie: Detector Concept – neutrons at scraping incidence

$^{10}\text{B}\text{-coated}$ lamellae inclined to incoming neutron intensity at an angle of η = 10°

Jalousie: Modular and Segmented for POWTEX Cylinder

All-active detector entrance area, no blind areas !

And: Detector barrel acts as a tight neutron shield !

POWTEX Instrument, Towards 4\pi-Coverage

- Cylinder jacket coverage 274°, 240 segments
- Two end-caps, φ-coverage 276° each
- No coverage on bottom \rightarrow sample instrumentation
- 2 Mio. active Voxels, 60.000 analog ASIC r/o channels

Projected Detection Efficiency

Neutron Wavelength [Angström]

Efficiency as function of wavelength:

- inclination 10°
- 8 ¹⁰B₄C layers

"The ¹⁰B based Jalousie neutron detector – An alternative for ³He filled position sensitive counter tubes", M. Henske et. al., Nucl. Instr. and Meth. A 686 (2012) 151–155.

"Absolute efficiency measurements with the ¹⁰B based Jalousie detector", G. Modzel et. al., Nucl. Instr. and Meth. A 743 (2014) 90–95.

Efficiency may be optimized for the application

From Area- to Volume-Sensitivity

POWTEX \rightarrow Volume detector with VOXELs

- born to cumulate detection efficiency \rightarrow competitive to ³He
- enhancement in rate capability even with wire-chamber tech.
- operation at ambient pressure → close to complete coverage, no pressure tanks
- enhancement in point density
 in depth, voxels not aligned!
- advanced options in background analysis
 → e.g. stray reflected rays
 → intrinsic collimation

Realization of POWTEX-Jalousie at FRM II

 Jalousie was elaborated in two prototyping iterations.

module pair at HEIDI (FRM II)

- Third iteration: Production pre-series (12 segments).
- Serial Production ongoing: •
- 240 cylinder segments assembled 100%
- 71% coating done (~500 m²).
- all electronics manufactured.
- 3 to 4 segments per week.

Detector Segments in Production at CDT GmbH

Cylinder Segment History of Production

consolidated rate of assembly: 3,8 segments/week

¹⁰B₄C Coating for POWTEX

500 m² coated ~ 71% of total area (700 m²)

¹⁰B₄C Coating for POWTEX

Figure of merrit "homogenous detection efficiency"

2. Realized through matching detection efficiencies of different detector segments within the barrel sequence.

+/- 1% variation from mean+/- 1% absolute variation (POWTEX)

Measurements at Triga Reactor Mainz

Slit-collimated Beam onto Jalousie segment at 10° (both wire planes shown side by side)

Measurements at Triga Reactor Mainz, Prototype II

collimated beam: width 0,5mm in detector

Resolution scan across anode wires

Resolution scan across cathode strips

measured resolution: $\Delta 2\theta = 0.38^{\circ}$ FWHM

provides TOF-resolution: $\Delta \tau = 2,7-6,9 \ \mu s$ FWHM for 1.0-2.5 Å wavelength

Delivery in Mounting Units of 8 Segments

Jalousie Specifications to meet POWTEX Needs

Parameter	Design	Value
Accumulated detection	8 boron layers	> 52% (1.0 Å)
efficiency	inclined at 10°	> 65% (1.8 Å)
		> 72% (2.5 Å)
spatial resolution (2D) (at ambient counting gas pressure)	 width of cathode readout strip 	resolution in 2θ:
	$\Delta 2\theta = 0,469^{\circ} \sim 6 \text{ mm}$	0,38° (FWHM)
3D in depth \rightarrow TOF	Iamellae height h = 7,9 mm at	resolution in φ:
	window corresp. to $\Delta \phi = 0,566^{\circ}$	0,665° (FWHM)
TOF resolution	Anode spacing b = 15,6 mm	2,7 – 6,9 μs (FWHM)
Count rate per segment	limited by coincident read-out of cathode and anode	1 MHz @ 10% dead time
Count rate per readout ch	limited by ASIC shaping time constant	333 kHz @ 10% dead time

•Very low γ-background: Low-Z converter material ¹⁰B, alpha versus e-ionization density

•Long term stability due to continuous purge of cheap counting gas through detector.

POWTEX End-Cap, anode-wires oriented to sample

- End-cap engineering design and prototyping ongoing
 - 12°-Segment sub-structured in 5 submodules

POWTEX Endcap Prototype

- First prototype of SUMO3 (not yet coated) has passed all tests successfully.
- Second prototype of SUMO3 is under construction: now also coated with ¹⁰B₄C.
- Test at TRIGA Reaktor Mainz soon.
- Production pre-series (four 12°-segments) sheduled for Q2/2017
- Serial production from Q3/2017 (additional 42 segments)
- POWTEX project finalization mid 2018.

Electronic Signal-Readout and DAQ

60.000 individual channels with CIPix-1.1 readout ASIC

- Position and event reconstruction via coincidence identification in local, module based FPGA, 2 Mio. volume elements (VOXELs)
- Data readout through daisy-chained GBit optical link (Struck SIS1104)
 - One GBit optical link transmits 12,8 Mio. event mode data elements per second (64 Bit per event defined for POWTEX).
 - Data aggregation onto few GBit links
 - Bandwidth focusing through Token Ring

CDRS: 256-channel read-out for POWTEX, 2D-200 or 2D-300 GEM detector

- Spartan-6 FPGA, future: Ultrascale
- opt. Gbit interface
- 4-fold CIPix-ASIC interface
- Clock recovery and synchronisation to global time
- 4ch ADC (60 MHz, 10 bit) → pulse height analysis

- DDR-RAM on board
- LVDS interface
- Avago opt. I/O interface
- Digital-IO diagnostic sensor interface
- 48V power distribution ring (galvanically decoupled)

System capability and scalability of CDRS

■ Token-Ring readout along the daisy chain
→ distribute bandwidth where it is needed

 Star-shaped clock distribution and backup communications channel

- System precautionary previsions:
 - Twofold access concept for firmware in-system upgrade
 - Guaranteed access even with faulty firmware installed
 - Three-fold clocking means
 - Two-fold controls access

CDT

CASCADE Detector Technologies GmbH Hans-Bunte Str. 8-10 69123 Heidelberg, Germany

www.n-cdt.com

New projects in 2017/2018

DREAM, ...

The ESS-Instrument DREAM

- Perfect in timing for production-resources availability.
- Engineering, assembly and QA procedures are running smoothly.
- DREAM-like larger coating area needs are feasible.

- CDT-team strives to get engaged !
- But production demand staged over many years !

The ESS-Instrument HEIMDAL

HEIMDAL, an instrument, which combines neutron powder diffraction (NPD), small angle neutron scattering (SANS) and neutron imaging (NI) in a single instrumental setup.

Given specs for the NPD detector:

- Coverage: 130° (from 30° to 160° in 2Theta)
- Height: 1000 mm
- Radius: 1500 mm (zylinder axis: vertical)
- Resolution vertical: 10 mm FWHM
- Resolution horizontal: 3 mm FWHM
- Counting rate expected per pixel: ~ 5 kHz during peak

NPD of HEIMDAL can be realized by Jalousie detector segments

NPD: coverage in 2 θ : 130° at R = 1500 mm coverage in phi: +/- 18° ~ +/- 500 mm

Enhancement of resolution in 2θ with single sided coating: 1,8 mm FWHM

8 to 10 successive converter layers feasible

HEIMDAL NPD detection efficiency

CASCADE: Multiple Boron Layers on GEMs

"CASCADE, neutron detectors for highest count rates in combination with ASIC/FPGA based readout electronics", M. Klein, C. J. Schmidt, Nucl. Instr. and Meth. A 628 (2011) 9-18

Typical Detection Efficiency of CASCADE 2D-200

CASCADE-Detector: 200x200 mm², 128x128 stripes

Development towards 300mm x 300mm ongoing

Position Resolution and Contrast with Neutrons

measured at former instrument EKN at FZ Jülich

TOF Dynamics at PF1A/ILL, 2003

 No saturation up to several MHz/cm² neutron conversion rate

 Dynamic range larger than 4 orders of magnitude

Conclusion

- CDT will move from POWTEX to ESS instruments in 2017/18.
- Any project requires a preceding engineering period.
- We are prepared to fully engage in supply of detector systems for ESS
- But we do also engage in contract manufacturing along third party designs.

 CDT maintains a broad portfolio of highly specialized detector systems for thermal neutron detection such as the GEM based detectors CASCADE
 2D-200 and 2D-300 and position sensitive beam monitoring solutions.

