

The BAND-GEM detector

G. Croci^{1,2,3}, A. Muraro¹, G. Grosso¹, E. Perelli Cippo¹, G. Albani³, G. Claps⁴, F. Murtas⁴, M. Rebai^{2,4}, M. Tardocchi¹, C. Höglund^{5,6}, L. Hultman⁶, J. Birch⁶, S. Schmidt⁶, L. Robinson⁶, R. Hall-Wilton^{6,7}, D.Raspino⁸, N. Rodhes⁸, E. Shooneveld⁸ and G. Gorini^{3,4}

¹Istituto di Fisica del Plasma (IFP-CNR) – Via Cozzi 53, 20125 Milano, Italy
²INFN – Sez. Di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy
³Dipartimento di Fisica, Università degli Studi di Milano-Bicocca – Piazza della Scienza 3, 20126 Milano, Italy
⁴INFN – Laboratori Nazionali di Frascati – Via Fermi 40, 0044 Frascati, Italy
⁵European Spallation Source ESS AB, P.O. Box 176, SE-221 00 Lund, Sweden
⁶Department of Physics, Chemistry and Biology (IFM), Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden
⁷Mid-Sweden University, SE-851 70 Sundsvall, Sweden
⁸IFE: ⁸STFC-RAL, ISIS facility, Didcot, Uk

ESS pre-construction in-kind contract with CNR

DETECTING THERMAL NEUTRONS WITH GEMS

- GEM detectors born for tracking and triggering applications (detection of charged particles)....
- ...but if coupled to a solid state converter they can detect
 - Thermal Neutrons \rightarrow ¹⁰Boron converter

- GEMs offer the following advantages
 - High rate capability (up to MHz/mm²)
 - Submillimetric space resolution (suited to experiment requirements)
 - Time resolution from 5 ns (gas mixture dependent)
 - Possibility to be realized in large areas and in different shapes
 - Radiation hardness
 - Low sensitivity to gamma rays (with appropriate gain)

 G. Croci et Al JINST 7 C03010;
 F. Murtas et Al, JINST 7 P07021;

 G. Croci et Al, NIMA, 712, 108;
 G. Croci et Al, JINST 8 P04006;

 G. Albani et Al, JINST 10 C04040;
 G. Croci et Al, EPJP 130, 118

 G. Croci et Al, Prog. Theor. Exp. Phys. 083H01;

G. Croci et Al, NIMA 720, 144; *G. Croci et Al*, NIMA 732, 217; *G. Croci* et Al, EPL, 107 12001

New BANDGEM detector assembly

Detector box equipped with three diagnostic windows 75 mm x 100 mm Borated Grids – 0.5 to 0.6 μ m of ${}^{10}B_4C$

Experimental Setup @ EMMA, ISIS

BAND-GEM on turntable

BEAM MONITOR GS-20 Lithium Glass Scintillator $\epsilon(1 \text{ Å}) = 0.6\%$

Experimental Setup Scheme

Tilt Angle O

Electrical Scheme

Beam footprint

$$I_{GEM} = \sum_{ON-pads} \int_{t=4 ms}^{t=20 ms} BandGEM(t)dt$$

ON-pads are defined as pads whose intensity is > 1% of the pad with the max intensity

Beam dimension 4 mm (t) x 4 mm (y)

Colour = I_{GEM}/Pad Area

Working Point determination – V₁ scan

- Values up to 15 kV were applied to the cathode thanks to new HV Module
- Plateau observed for V₁> 8 kV
- Working point selected: V₁ = 11.1 kV

- BAND-GEM detector sensitive to gamma rays (in this case produced by 1mm Cd sheet inserted in the beam) for V₃ > 900 V (gain > 200).
- Working Point selected at V₃ = 900 V
- Full study of gamma-ray sensitivity to be completed in 2017 using a strong (100 MBq) source (e.g. Cobaltissimo @ POLIMI).

Width of lateral diagnostic window = 75 mm

Relative Charge Extraction Efficiency

Beam entering from side. z = 0 mm (Cathode); z = 96 mm Grid Top. Working point as before

Efficiency (at 1 and 2 A) vs tilt angle

Good agreement with simulated values

Efficiency as a function of λ

- Alpha and Li ion escape efficiency from a 850 nm thick ${}^{10}B_4C$ layer = 73%
- Assumes the measured extraction efficiency in the simulation model

FWHM vs tilt angle – Space resolution

Good agreement with simulated values Experimental corrected for offset by about 5 degrees Effective resolution ~ independent of λ

BANDGEM application @ LOKI, ESS

Requirements for rear detector panel
Rate Capability = 40 kHz/cm²
Time resolution better than 1 ms
Efficiency >40% at 4 Å

•X-Y Space resolution of about 6 mm

Construction of BANDGEM full module for LOKI as an upgrade of the first prototype

Rear Detector

- N.4 45 Degrees detectors
- N.5 36 Degrees Detectors

Converter Grids

3D converter assembly

Sectorized GEM foil and frame

GEM foil stretched and glued to its frame as usual.

ReadOut Anode

45 degrees Detector: Detector Assembly

The Front End Electronics

The first prototype electronics is based on Carioca Chip. Total dimension : 3x6 cm²

Digital Chip with 8 channels Equips the LHCb GEM detectors Fast chip – used for triggering Adapted from MWPC

A new chip is available: the GEMINI chip. Mixed analog and digital chip that Has 16 channels/chip. Especially developed for GEM detectors

Conclusions

- Improved construction design using waterjet-cut grids
- Needs very high voltage for operation= 15 kV in total
- Needs to be tilted by about 5 degrees for operation
- Detector response:
 - Efficiency @ 4 A > 40%
 - Resolution (FWHM) @ $\Theta = 4^{\circ}$: 6 mm
- Competivite for SANS (Small angle neutron scattering applications)
- "Full module" for LOKI designed; under construction

SPARE SLIDES

Nominal 1 µm of ¹⁰B₄C DEPOSITION @ ESS Workshop (Linkoeping)

B4C thickness 600 nm in center, 500 at edge measured @ Linkoeping University using SEM

Detector Anodic Pads – 5x10 cm² active area

- Three different types of pads representative of final geometry
 - Small 4x3 mm²
 - Intermediate 4x6 mm²
 - Large 4x12 mm²
- 64 BANDGEM pads (half detector) connected to DAE
- For each pad (from 65 to 128)
 DAE-TOF spectra are produced:
 - Single hits
 - Multiple hits (channel number > 128): more than one pad hit in same time-bin
 - 2 noisy pads

Time of Flight Spectra – EMMA 1 Å < λ < 4 Å

Working Point determination – V₂ scan

- Counting rate depends weakly on the field between the 3DGrid and the first GEM foil
- Working point selected: V₂ = 1500 V

Absorbed fraction at each step

FWHM ESTIMATE (2)

$$\int p(x)dx = -4p^4 + 16p^3 - 24p^2 + 16p$$

$$\mu = \frac{\int x * p(x)dx}{\int p(x)dx} = \frac{-10p^3 + 36p^2 - 48p + 24}{-p^3 + 4p^2 - 6p + 4}$$

$$p(x) = \begin{cases} p(p^2 - p^3 - p^3$$

$$\sigma^{2} = \frac{\int (x-\mu)^{2} * p(x)dx}{\int p(x)dx} \qquad FWHM = 2.35\sqrt{\sigma^{2}}$$

Detector overview

45 degrees Detector: Tilting system

Vacuum Box (reference plane orthogonal to the direction)