A ³He based microstrip gas chamber with a novel 2D readout WP9.3

D. Roulier B. Guerard

ILL

September 7, 2016

D. Roulier ILL

A ³He based microstrip gas chamber with a novel 2D readout

September 7, 2016

1/25

Previous microstrip

Design:

- 64 individual anode strips,
- 2500 µm pitch,
- Anode width = $15 \mu m$,
- Anode-Cathode gap = $300 \ \mu m$,
- Anode length = 173.7 mm
- Schott S8900 plate
- 100 nm Al on 200 nm Cr to reduce anode resistance (7.8 kΩ)

- Signals are read via 64 individual Anodes (0 V)
- Negative voltage applied on Cathode (-1.5 kV to -1.8 kV)
- Charge Division Method

 Q (left)
 Amplifier:Left
 Annode
 Annode
 Amplifier:Right

- Drift : -2.5 kV
- Guard ring (to avoid edge electrical field distortion)
- Conversion Gap : 30 mm
- Gas 3 He (2 bar) + CF₄ (3 bar) \sim 67.05% of efficiency (λ =2.5Å, 10 mm Al window + 30 cm Gap of 3 He)

Results (2011)

Resolution 1.56 mm

Problem : very quick ageing (44% gain drop in 3 hours, unrecoverable)

D. Roulier ILL

New tests

With ArCO₂ instead of CF₄

Expected spatial resolution not as good (lower stopping power)

- Gas ^{3}He (2 bar) + ArCO_{2} (3 bar) \sim 67.05% of efficiency (λ =2.5Å, 10 mm Al window + 30 cm Gap of ^{3}He)
- Drift : -1.4 kV
- Cathodes to -700 V
- Anodes to 300 500 V

New MSGC

- typical cross-shape can be corrected with offset
- use of integral of signal instead of max. amplitude

 \Rightarrow improved resolution, image "unshrunk"

Scan with a perpendicular slit every 10 mm \Rightarrow resolution between 2.5 mm and 3 mm

Ageing

irradiation on a 5 mm $\times 5$ mm square (\sim 10 kHz/mm anode) during 40 hours

Ageing is not as severe as with CF_4 , but strong enough to prevent use on any ILL instrument

Conclusion

- Successful center of mass reconstruction with ArCO₂
- Several leads to determine how to analyse data with new prototype
- Confirmation that AI layer is not a sustainable solution

Previous MSGC

New MSGC

New microstrip

- 64 anodes and cathodes, individual readout
- anodes 10 μm, cathodes 50 μm, length
 76.5 mm
- Charge division on cathodes (lower resistance than anodes)
- Chromium strips, no additional layer
- Borofloat 33, not S8900 (cheaper, for prototyping).

5 plates made by IMT (same manufacturer)

- coupling boards re-used
- charge division boards re-used

- 64 anodes, 64 cathodes \rightarrow 128 + 128 = 256 connections
- bidim100 enclosure re-used

D. Roulier ILL

Previous MSGC

Building the connectors

- Pins are every 2 mm on each side of the connector \rightarrow every 1 mm on the MSGC.
- 2 connectors for the 64 anodes (0.5 mm pads) and 2 connectors for the 64 cathodes (0.8 mm pads).
- Future connectors will be with flexible kapton. To test the design, FR4 and wires.
- Spring probes (spherical head Ø0.5 mm) are used to make contact with the pads

Spring probes can be aligned with the pads optically (with magnification)

New MSGC

Expected anodes and cathodes resistances

- length l = 7.65 cm
- thickness t = 200 nm
- anodes width $w_a = 10 \ \mu m$
- cathodes width $w_c = 50 \ \mu m$
- $R_s = 2.6 \ \Omega/\Box$

 $R_a = R_s \frac{l}{W_a} = 20 \text{ k}\Omega$ $R_c//R_c = \frac{1}{2}R_s\frac{l}{w_c} = 2 \mathrm{k}\Omega$

First tests with gammas

- Tests with 3.5 bar Ar, 0.2 bar CO₂, no helium, gamma detection
- Drift -1000 V
- HV +850 V on anodes
- AmBe source
- 60 keV and 14 keV gamma peaks

Glass conditioning

We observe variations of gain depending on how long the detector has been counting (HV-supply+source)

Questions to be answered to :

- is it HV dependant?
- is it beam/source dependant?
- is it gas dependant?

D. Roulier ILL

Tests with neutrons

- Tests with 3.5 bar Ar,
 0.2 bar CO₂, 1.3 bar ³He
- Drift -1000 V / -1600 V
- HV +750 V on anodes
- AmBe source
- 60 keV gamma peak and neutron peak

Preliminary tests with neutron beam

20/25

Position sensitivity

The position along the strips is given by the sum of the individual cathode signals divided by the anode signal with the condition that the the central strip should carry the maximum amplitude.

Horizontal slit at 3 positions (10 mm translations), perpendicular to the strips.

2D picture

Conclusion

- progress made concerning how to analyse data
- mechanical difficulties for new prototype have been identified and overcome during the design, all parts have been ordered
- new plate tested with neutrons in temporary configuration

Prospects

SINE2020-MSGC1

- Final mounting (Kapton circuits)
- full characterization on beam line
- production on Schott S8900 glass (to replace Borofloat)

SINE2020-MSGC1 \times 2

- Mounting of 2 SINE2020-MSGC1 side by side (Borofloat or Schott S8900)
- Consult Schott about maximum size for Schott S8900 substrate

SINE2020-MSGC2 (around 20 cm \times 20 cm)

1 mm cathode readout pitch (both sides) with new pressure vessel and connectics

Thank you

