

Task 9.4.1

Resistive plate chamber development

TUM (DE)

ESS (SE)

Alberto Blanco Andrey Morozov Paulo Fonte Luís Lopes <u>Luís Margato</u>

LIP (PT)

Karl Zeitelhack

Irina Stefanescu

Summary

- **Q** RPCs Basics / Examples
- □ Thermal neutron detection with B4C coated RPCs
- First results with a 10B4C coated hybrid RPC
- Work Plan

RPC Basics

Charging up of the resistive electrodes after avalanche (rate effects): time constant: $\tau = \rho \; \epsilon_0 \; \epsilon_r$

ρ = Volume resistivity

 ϵ_0 = Vacuum Permittivity

```
\epsilon_r = Rel. permittivity
```

Generation of electron-ion pairs (Ionizing particles) in the gas-gap

Working modes

Depending on the applied voltage one may have different operation modes:

1. Avalanche mode

Lower signal amplitude but more favourable for High rate operation

2. Streamer mode

Higher signal amplitude allows a simpler design of the front-end electronics

Examples of RPCs Applications

HADES@GSI

Prior research

The idea to use RPCs to detect low energy neutrons has been suggested earlier (1993) by

E. Calligarich ; R. Cardarelli ; R. Santonico ; et al., doi:10.1117/12.138667

It has never been realised in a position-sensitive, high detection efficiency neutron detector

The multi-gap RPC configuration for neutron detectors has not yet been considered

What can be found in the literature

¹⁰B Converter

$$n + {}^{10}B \rightarrow \begin{cases} {}^{7}\text{Li}(0.84 \text{ MeV}) + {}^{4}\text{He}(1.47 \text{ MeV}) + \gamma(0.47 \text{ MeV}), & 94\% \\ {}^{7}\text{Li}(1.01 \text{ MeV}) + {}^{4}\text{He}(1.78 \text{ MeV}), & 6\%. \end{cases}$$

First results with a 10B4C coated hybrid RPC

Hybrid RPC Configuration

Signal pick-up strips engraved on a PCB: • Strip width = 2mm • Pitch = 2.5mm

Plate of float glass (0.35 mm thick): 8cm x 8cm

Plate of AI (1.0 mm thick): 8cm x 8cm

Gas-gap width: 0.35 mm; filled with C2H2F4 @ 1atm

First results with a 10B4C coated hybrid RPC

Hybrid RPC

64 channels Data Acquisition System based on MAROC3 ASIC from Omega

Assembly of an 10B4C coated Hybrid RPC (Al cathode coated with 10B4C, 2 microns thick)

First results with a 10B4C coated hybrid RPC

Detector prototype in place at CT2 thermal neutron beam at ILL

Debugging tests with a **Am/Be** neutron source, before moving the detection system into the Reactor Area.

Tests in a monochromatic thermal neutron beam at ILL — Plateau Measurement

Two RPCs with a similar configuration: RPC-1: No coating RPC-2: Cathode coated with 2micron 10B4C

10B4C coatings were manufactured at ESS Detector Coatings Workshop in Linköping

Experiment performed in the thermal neutron beam CT2 (λ =2.5 Å)

HV (Volt)Efficiency2400~ 6 %Obs.: Considering a efficiency for the 3He P. Counter ~ 80%

Obs.: Considering a efficiency for the 3He P. Counter * 805

Tests in a monochromatic thermal neutron beam at ILL — Position resolution

Tests in a monochromatic thermal neutron beam at ILL — Position resolution

- **Explore the potential of 10B4C coated RPCs for PSNDs**
 - MC SIMULATIONS
 - PROTOTYPE DESIGN AND BUILDING OF 10B4C COATED RPCs
 - PROTOTYPE'S CHARACTERIZATION
 - STUDY OF 10B4C COATED RPCs OPERATION IN AVALANCHE MODE
 - 2D POSITION RECONSTRUCTION

- MC SIMULATIONS (GEANT4 and ANTS2 packages)

Optimization of position resolution and detection efficiency

- > Optimization parameters
 - \odot Number of converter layers / Converter layers thickness
 - o Gas-gap width
 - Resolution information from:
 - \Rightarrow Range of the charged particles inside the gas-gaps;
 - ⇒ Distribution of the energy deposition in the normal direction and along the surface

Second phase:

Include neutron absorption and scattering by materials in the beam path

- PROTOTYPE DESIGN AND BUILDING OF 10B4C COATED RPCs

Different RPCs configurations are considered, e.g.:

 \odot Stack of:

- Single-gap RPCs
- > Double-gap RPCs (two anodes sharing the same cathode)

> Multi-gap RPCs: leads to very modular and compact designs; <u>the</u> <u>10B4C layers have to display a surface resistivity > $10^6 \Omega$ /</u>

Feasible 10 layers of 10B4C in only a 10 mm stack height;

Small mass thickness

(minimization of neutron absorption and scattering in detector materials)

- PROTOTYPE DESIGN AND BUILDING OF 10B4C COATED RPCs
 - PRODUCTION OF 10B4C COATINGS WITH REQUIRED FEATURES
 - > Adequate surface resistivity for the Multi-gap RPC
 - PROTOTYPES CHARACTERIZATION (with thermal neutrons and γ's sources) e.g.:
 - Efficiency
 - Position resolution
 - gamma sensitivity

Tests of prototype's in a thermal neutron beam should be foreseen / planned

- STUDY OF B4C COATED RPC OPERATION IN AVALANCHE MODE

Operation of the RPC with HIPs e.g. with **4He** particles; Namely the effect of a high ionization density in the gas-gap;

Look for differences in signal shapes for gamma's and thermal neutrons: towards Pulse Shape Discrimination (PSD)

Gas mixtures optimization for the operation of 10B4C coated RPCs in the **Avalanche Regime** and with **lower HV**

- 2D POSITION RECONSTRUCTION
- Readout electrodes design:
 - Arrays of parallel strips (optimization of the geometry)
 - For 2D codification in the same plane of readout
- Statistical reconstructions algorithms:

Analogy: PMTs \Rightarrow Pads electrodes

We would like to apply the experience which LIP has acquired during work on position sensitive detectors with optical readout.

Thank you for your attention

Typical gas mixture:

- Freon R134a (tetrafluoroethane): high electron affinity (electron capture ⇒ avalanche confinement);
- SF6 (sulphur hexafluoride): 1 to 10% (to suppress streamer discharges);
- C4H10 (Iso-Butane): 0 to 5% (to prevent photon induced streamers.

Some of the possible electrodes configurations HV♥ Asymmetric wide-gap (typ. 2 mm) HV∮ Asymmetric <u>narrow-gap (typ. 0.3 mm)</u> HV **FLOATING** Asymmetric multigap [Williams et al., 1996] Multi Gap RPC E. Cerron Zeballos et al., NIMA 374(1996)132-135 HV ♥ Improved time resolution Symmetric multigap **High rate capabilitry**

and several other combinations...

Fonte IEEE TNS 2002

¹⁰B₄C coated multigap RPCs for position sensitive neutron detectors: possible detector configurations

→ ⁷Li (1,02 MeV) + ⁴He (1,78 MeV) Q = 2,79 MeV (6 %)

Timeline

	Year 1	Year 2	Year 3	Year 4
MC SIMULATIONS				
PROTOTYPE DESIGN ; 10B4C COATINGS MANUFACTURE				
BUILDING OF FIRST 10B4C COATED RPCs; EXPLORTORY TESTS				
STUDY 10B4C COATED RPCs OPERATION IN AVALANCHE MODE				
2D POSITION RECONSTRUCTION				
PROTOTYPE'S CHARACTERIZATION (Detailed Tests with a neutron beam and gamma sources); Report conclusions				