

SINE2020

WP9 Instrumentation: Detectors

Task 9.2.2 Scintillation Detectors with direct PMT readout

LIP Coimbra 07. September 2016 | Ralf Engels

Outline

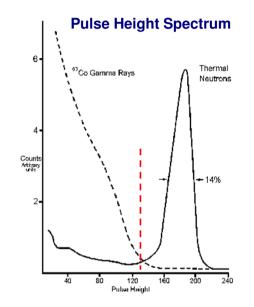
- Detector Setup
- Coarse Concept
- Scintillator
- Readout Electronics
- First Tests
- Conclusions

Detector Setup

Envisaged Detector Principle

- usage of Li-glass scintillator and PMT for light detection
- apply threshold on PMT signal to select and register neutron peak

• Extend Principle by usage of Flat-Panel MaPMT


- simple neutron counter
- dense array of PMTs with small amount of dead space
- possibility of modular and scalable design for large areas
- position resolution determined by pixel size of individual PMTs
- count rate capability probably mainly limited by maximum current

Coarse Detector Concept

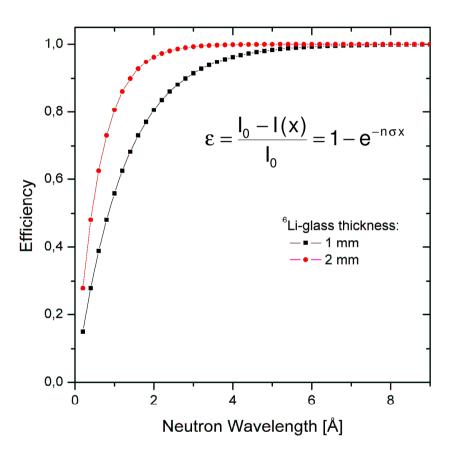
Envisaged Detector Principle

- usage of Li-glass scintillator and PMT for light detection
- apply threshold on PMT signal to select and register neutron peak
 - Simple neutron counter
- Extend Principle by usage of Flat-Panel MaPMT
 - dense array of PMTs with small amount of dead space
 - possibility of modular and scalable design for large areas
 - position resolution determined by pixel size of individual PMTs
 - count rate capability probably mainly limited by maximum current

GS20-⁶Li-glass scintillator

Neutron capture reaction:

 $n + {}^{6}Li \rightarrow {}^{4}He + {}^{3}H + 4.79 MeV$

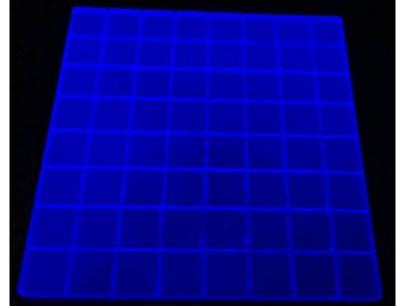

6.6 weight% Li, 95% ⁶Li-enriched

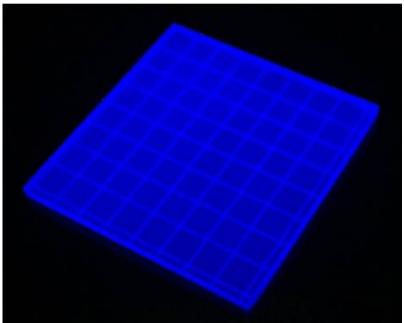
Emission peak at ~390 nm (Ce doped)

Light yield ~ 6000 photons/n (corresponds ~1.5 MeV gamma)

- avoid optical crosstalk by machining thin grooves corresponding to pixel edges and fill them with reflector
- insensitive outer edge of 1.5 mm of MaPMTs together with 200 µm insensitive grooves yield an active area of 84% for H8500
- 1mm Li-glass scintillator could be sufficient for detection efficiency of ~80%
 @ 5A

High Detection Efficiency



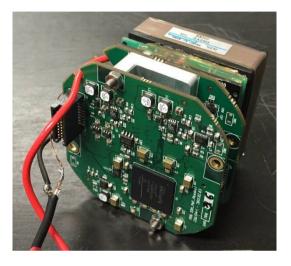


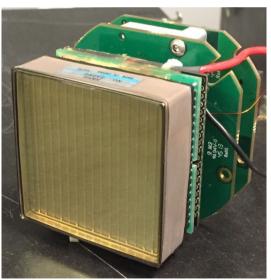
Scintillator Groove Tests

Scintillator glued on support glass (1 mm scintillator, 2 mm glass)

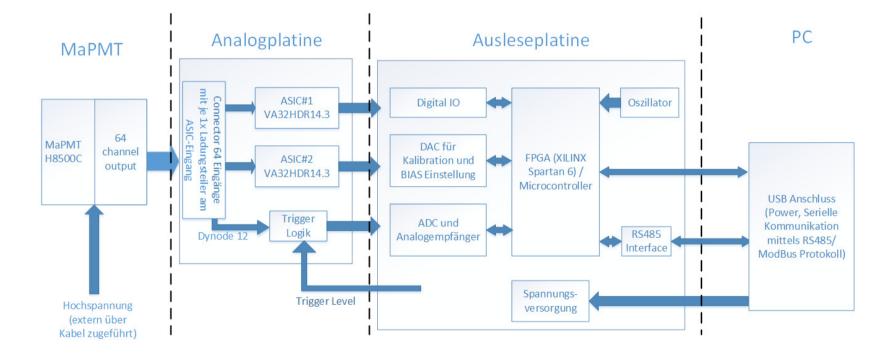
Common glass saw

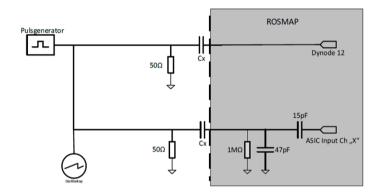
Wafer saw


Coarse Readout Electronics Concept

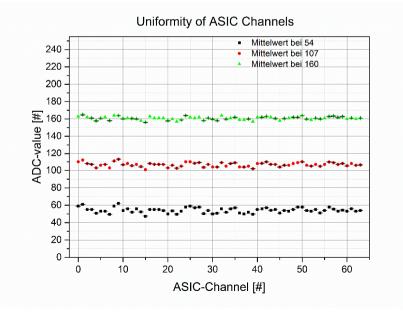

- Pulse Processing and Neutron Recognition
 - amplification of PMT signals (e.g. variable gain amplifier)
 - measurements by registering signals above a given threshold applied by a discriminator
 - calibration by measurement of pulse height spectra and adjustment of discriminator thresholds relative to neutron peak
- Control and Readout Electronics
 - time stamping, coding and transport of neutron hits
 - control and readout interface for adjustment of pulse processing

Readout Electronics Evaluation System


- Required parameter for pulse processing: charge per neutron
 - dependent on number of photons hitting photocathode, quantum efficiency, gain of MaPMT
 - difficult to predict (reflective effects)
 - adjustable to some degree by MaPMT gain
- ROSMAP readout system for evaluation
 - digitization and counting mode available, but only digitization mode used for tests
 - 2x VA32HDR14.3 ASICs for digitization of channels with 10:1 (changed to 3:1) charge splitter for measurement up to 200pC input charge
 - trigger derived from PMT dynode signal
 - 14 bit ADC, data values are delivered with 8 bit resolution via ModBus interface
 - read out rate of ~50 Hz achieved for digitization mode (with python interface)
 - external high voltage supply for MaPMT



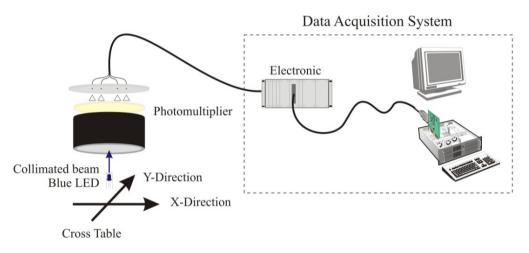
Blockdiagram of the ROSMAP System


Charge Measurements

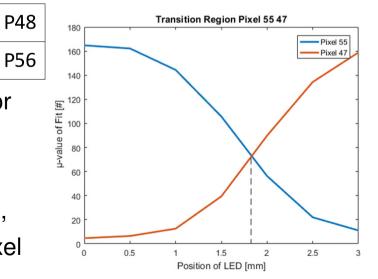
Blockdiagram of the test setup

 $\Delta \text{Max} / \text{Min} = 9$ $\Delta \text{Max} / \text{Min} = 12$ $\Delta \text{Max} / \text{Min} = 14,7$

- Homogeneity between the different ASIC Channels
 - Comparison of the gain with a constant charge injected into all 64 ASIC channels



Setup of the test bench and cross talk measurement


P47

P55

- Test software allows different figures/scans to test the PMT
- Every parameter are stored in files for each scanned PMT like
 - scan area,
 - temperature in/out-site scan box,
 - pulse height spectra for each pixel and in total

- The test bench has an active scan range of 40cm x 40cm with a collimated 1mm (exchangeable) blue light source
- SPS controlled motion unit
- Position reconstruction is < ±15µm

Conclusion

- machining of the scintillator for grooves was successful, but still need to be further investigated
- ROSMAP system has been chosen for evaluation and initial operation with the system and a H8500 has been started
- modification of the ROSMAP LabVIEW software is needed
- first optical and electronic measurements were carried out
- Iow count rate expected with the ROSMAP System