Development of a WLS fibre detector at ISIS for reflectometry WP 9.2.1

G. Jeff Sykora, Erik Schooneveld, Nigel Rhodes

SINE2020 Meeting 14 June 2017

Overview

- Recap from last time
- Basic performance of rotating detector
- Global rates
- New segmented concept
- Next steps

Reflectometer requirements on ISIS

Linear PSD

- 0.5mm position resolution preferable
- High efficiency
- ▶ 0.5 15 Å range
- Good uniformity
- ~300 mm linear coverage
- High rate capability
- Large dynamic range

2D Reflectometer and GISANS

- 1 x 1mm² acceptable
- ➢ 0.5 x 6mm² acceptable
- 0.5 x 0.5mm² preferable
- 500mm x 300mm total size
- Varying areas/angular coverage
- ▶ 0.5 15 Å range
- Large dynamic range

High rate 2D Crossed fibre

- Single fibre read-out
- > 0.5mm fibre
- Fibres oriented 45° to beam slits

Single 0.5 mm fibre: 32 kHz/mm² (still 16 kHz per fibre) Dead timing 2 fibres Can enlarge beam! Science & Technology Facilities Council

High rate 2D Crossed fibre

- Single fibre read-out
- > 0.5mm fibre
- Fibres oriented 45° to beam shape
 - ≻ Gain $\propto N_{fibres}$

4 mm x 1 mm beam 16 kHz per fibre maximum

Dead timing 4 fibres in each axis Can enlarge beam!

High rate 2D Crossed fibre

- Single fibre read-out
- > 0.5mm fibre
- Fibres oriented 45° to beam shape
 - \succ Gain $\propto N_{fibre}$

Theoretical rate capability of the detector with fibres at 45°

Example 1: 4mm x 1mm direct beam

Largest fibre area exposed = 0.5mm²

16 kHz on 1 fibre = 32 kHz/mm²

Total rate = 128 kHz

Example 2: 30mm x 1mm direct beam

Largest fibre area exposed = 0.5mm²

16 kHz on 1 fibre = 32 kHz/mm²

Total rate = 960 kHz

Potential for ghosting!

Science & Technology Facilities Council

Example 3: 30mm x 4mm direct beam

Largest fibre area exposed = 2 mm²

16 kHz on 1 fibre = 8 kHz/mm²

Total rate = 960 kHz

Summary (September 2016)

Does the concept work?

- ✓ Fibre support mechanics
 - For 32mm x 32mm active area

Summary (September 2016)

Does the concept work?

- ✓ Fibre support mechanics
 - For 32mm x 32mm active area
- Effect of light spread with diamond pixels
 - Light spread is within 5mm
 90% of the light is absorbed within 2mm
 - Light sharing between layers is unequal (factor 1.5-2)

Fibre number

Summary (September 2016)

Does the concept work?

- ✓ Fibre support mechanics
 - For 32mm x 32mm active area
- Effect of light spread with a diamond pixel
 - Light spread is within 5mm
 90% of the light is absorbed within 2mm
 - Light sharing between layers is unequal (factor 1.5-2)
- Ghosting appeared off the beam axis during testing on LARMOR.

Next steps (September 2016)

Does the concept work?

- Economising
 - Increase fibre pitch interpolate
- Electronics developments
 - Intra-discriminator communication
 - ToF interface to DAE
- Impact on rate capability
- Signal processing and positioning algorithm
 - Need to reduce/eliminate ghosting
 - Optimise signal processing for rate

Next steps (September 2016)

Does the concept work?

- Economising
 - Increase fibre pitch interpolate
- Electronics developments
 - Intra-discriminator communication
 - ToF interface to DAE
- Impact on rate capability
- Signal processing and positioning algorithm
 - Need to reduce/eliminate ghosting
 - Optimise signal processing for rate

Electronics development

On board discriminator to DAE interface

Enables reliable Time of Flight measurements

Testing on CRISP

Detector position

Fan beam geometry

Adjustable slits for a horizontal beam

Position resolution

> 45 degree rotation

> 0.5 mm mask with open beam

Position resolution

Gaussian fit: peak width = 0.59 mm Horizontal 0.54 mm Vertical

Ghosting

No sign of ghosts

Ghosting

No sign of ghosts

0 deg rotation

Reasonable rates

Ghosting

Increase slit sizes

- Increase slit size to increase rates
- > Limitation: Peak flux ~ $2x10^{6}/cm^{2}/s$ when slits are fully open
 - Unable to achieve dead timing in a single line on CRISP
 - Global rate limitations?

Increase slit size to increase rates

Global rates

Increase slit size to increase rates

Global rates at 45 degree rotation

0 deg rotation

45 deg rotation

 No gain to be made by rotating the detector except for high intensity beams

Where is the limitation?

Need to overcome global rate limitations!

X-Y coincidence needed across entire active area

- Event positioning searches for peak intensities
 - > Up to 10 μs coincidence time

Solution for global rate limitations:

- High aspect ratio 2D
- Limits number of possible fibre combinations
- Very limited ghosting probability depending on fibre code

Summary

- DAE output electronics for the 64 ch FP PMT has been completed and is instrumental in all developments to date and in the future.
- Position resolution was determined to be 0.5 mm in both directions.
- Ghosting appears at neutron count rates close to saturation.
- > There is 5% dead timing at 80 kcps global peak rate.
 - Global dead time is most likely caused by coincidence time limitations due to misbehaviour of ZnS:Ag signal.
- A segmented, high aspect ratio, 2D detector has been conceptualised and started to solve global dead timing and ghosting issues.

Next steps

- Immediate steps
 - Construct and test segmented detector
 - Characterise both detectors on a higher flux instrument (OffSpec or Larmor)
- Long term
 - Increase fibre pitch (economise)
 - Develop signal processing and positioning algorithm
 - Need to reduce/eliminate ghosting
 - Optimise signal processing for rate

Thank You!

uncil

