

M. Hildebrandt :: NUM :: Paul Scherrer Institut

Approaches for a 2D Neutron detector based on ZnS:⁶LiF readout with WLS fibers and SiPMs

SINE2020 WP9 Detector Meeting, Abingdon, 14.01.2016

The development of a 2D thermal neutron detector – which is our proposal within SINE2020 WP9 – is based on our recent work on a 1D detector.

 \rightarrow content of the talk: • reminder of 1D thermal neutron detector

• ideas / approaches for 2D thermal neutron detector

The development of a 2D thermal neutron detector – which is our proposal within SINE2020 WP9 – is based on our recent work on a 1D detector.

\rightarrow content of the talk: • reminder of 1D thermal neutron detector

• ideas / approaches for 2D thermal neutron detector

POLDI neutron beam line at SINQ (PSI)

- time-of-flight neutron diffractometer
- strain measurements: accurate determination of lattice spacings

current detector

- single ³He wire chamber (1-dimensional)
- in operation since 2001, refurbishment 2012/13

\rightarrow upgrade program started in 2012

POLDI upgrade program

- two oppositely placed detector banks
- rather stringend spatial boundary conditions:
 - ightarrow 2 modules on each side

detector requirements

detector modules	2 x 2
radius	2000 mm
channel width / height	2.5 mm / 200 mm
channels per module	400
size of one module	(1 x 0.2) m ²
neutron wavelength	1-6Å
detection efficiency	≥65%@1.2Å
time resolution	≤ 1µs
sustainable count rate (per channel)	4 kHz
gamma sensitivity	< 10 ⁻⁶
quiet background rate (per channel)	< 0.003 Hz

Motivation for PSI-Approach – The Big Picture

The neutron detection system is based on:

• ZnS:Ag/⁶LiF scintillation screen

• wavelength shifting (WLS) fibres

The new approach includes:

• Silicon Photomultiplier (SiPM)

- no Helium-3
- established technology, appropriate properties
- but: opaque, long emission time
 → small number of photons spaced out in time
- efficient, high and uniform light collection
 → less fibres, no "light sharing", no coding
- fast, single photon counting capability
- small
- insensitive to magnetic fields
- cheap → each detection element coupled to single SiPM
- but: cross talk, dark counts
 → signal fluctuations in analog integration
- □ analyse temporal distribution of SiPM pulses
 → neutron signal extraction
- digital signal processing system

Neutron Detection Unit

ND2:1scintillation screen (Scintacor)

- 0.25 mm and 0.45 mm
- grooves machined in 0.45 mm screen

WLS fibres: Kuraray Y11(400)M

- Ø = 0.25 mm
- embedded in grooves of scintillator

Eljen EJ-500 optical epoxy

detection unit

- front end: fibres polished and mirrored
- rear end: 12 fibres glued in plexigas block, polished and connected to SiPM

detection unit with 4 layers

- neutron absorption probability >80% @1.2Å
- intrinsic time resolution <1 μs

 \rightarrow efficient and uniform light collection

→ less fibres, no "light sharing", no channel coding compared to clear fibre and PMT readout

1-channel, 4-layer (full-length) unit

→ this unit represents elementary building block of full-size detector

Silicon Photmultiplier (SiPM)

properties

- opto-semiconductor device with excellent single photon counting capability
- PDE ~35% (at emission wavelength of WLS fibres)
- high gain: 10⁵ to 10⁶
- fast response and very good time resolution
- operation: low voltages (≤100 V), room temperature
- insensitive to magnetic fields
- compact

• sensitive areas, e.g. (1×1) mm², (3×3) mm², with pixel sizes (10×10) mm² to (100×100) mm²

drawbacks

- dark counts $\geq 100 \, \text{kHz/mm}^2$
- cross talk ~20%
- afterpulses ~1-2%

initial concern: contribute to signal fluctuations during long integration times

dark count rate might increase due to accumulated radiation damage

- \rightarrow irradiation test in POLDI beamline with (1×1) mm² SiPM: increase of ~90 kHz/year
- → measurements in lab: non-irradiated (3×3) mm² SiPM with dark count rate of 1 MHz corresponds to: (1×1) mm² with 0.1 MHz + ~10 y operation
 - non-irradiated (1×1) mm² SiPM with 0.1 MHz dark count rate with LED induced additional "dark count rate"

PAUL SCHERRER INSTITUT

Signal Processing System

7

neutrons Scintillator WLS-fiber

- leading edge discriminator
 - one SD puls is generated, independent of number of fired SiPM cells
 - suppression of SiPM cell-to-cell cross-talk due to "digitization" of SiPM pulses
- filter (examples)
 - consecutive delayed self-coincidence on SD-pulse sequence
 - \rightarrow scalable, multi-stage filter
 - moving sum
 - moving sum after differentiation
 - CR-RC⁴
- "event generator"
 - elimination of late after-glow photons
 - puls-pair resolution vs multi-count ratio

• 16-channel detection unit

• setup in POLDI experimental area at SINQ

SINE2020 WP9, Abingdon, 14.01.2016 – page 10

Malte Hildebrandt, PSI

- achieved detector performance
 - 1D, gapless, individual pixel readout
 - individual long pixels (2.5 mm, 200 mm)
 - detection efficiency at 1 Å 60 % absorption probability 75 % trigger efficiency 80 %
 - background count rate
 - gamma-sensitivity (⁶⁰Co)
 - multi-count ratio
 - dead time
 - max. neutron count rate
- status of POLDI project:
 - scalable detector design
 - FPGA-based, scalable readout electronics
 → POLDI detector requirements achieved
- to do:

• tools/procedures for mass production, detector housing, engineering & area layout, etc.

 \rightarrow POLDI Upgrade and realisation of detector modules postponed due to reduced priority

≤ 10⁻³ Hz

≤ 10⁻⁷

≤ 10⁻³

≈ 6 µs

≈ 50 kHz

Measurements in POLDI - 1

- setup
 - 400-channel ³He detector without collimator
 - 16-channel scintillator module
 - at 90° scattering angle
 - 2 m away from sample
 - shielded with borated polyethylen plates
 - sample: iron wire, $\emptyset = 1 \text{ mm}$

- condition
 - DAQ of two detectors synchronised
 - same reset signal from chopper

Measurements in POLDI - 2

• channel vs time (raw data), both detectors superimposed

Measurements in POLDI - 3

Measurements in POLDI - 4

The development of a 2D thermal neutron detector – which is our proposal within SINE2020 WP9 – is based on our recent work on a 1D detector.

 \rightarrow content of the talk: • reminder of 1D thermal neutron detector

• ideas / approaches for 2D thermal neutron detector

- pixelated 2D detector
 - 2D, gapless, individual pixel readout
 - individual pixel size down to
 2.5 mm × 2.5 mm (?)
 - detector performance of 1D POLDI design (except for time-of-flight uncertainty)
- but:
 - large number of individual channels (WLS fibers, SiPMs)
 - complex mechanics
 - "thick" (in n-flight direction)
 → not "interchangeable" with 1inch ³He tube

- geometrical design
 - 2D, gapless (horizontal), individual long pixels with two-side readout
 → 2nd coordinate via light sharing/pulse-amplitude analysis
- light sharing approach
 - proportionality between N_{detectedphotons} and signal amplitude essential
 → photon counting approach for POLDI (maybe) not suitable due to 10 ns dead time
 - SiPM, high pixel density, short recovery time (like for POLDI)
 - transimpedance amplifier (like for POLDI) followed by semi-gausian CR-RC⁴ filter
 → to avoid saturation in photon detection
- simple modelling
 - common formulas: $I = I(x, I_{01}, L_{att1}, I_{02}, L_{att2})$,

 $N_{photons, left or right} = I_0 \cdot att_{l or r}(x, I_{01}, L_{att1}, I_{02}, L_{att2}) \cdot PDE$ Asymmetry = Asymmetry($N_{photons, left}, N_{photons, right}$)

I₀: average number of photons trapped in fiber within first 2 μs

- input parameters
 - distribution I₀ (determined from own measurements)
 - short attenuation length L₁ = 12.7 cm (literature*)
 - relative amplitude between short and long attenuation lengths (own measurements)

* M.David et al., Comparative Measurements of WLS Fibers, CERN Documents Server, ATL-TILECAL-94-034

- free parameters
 - long attenuation length L₂ (condition for L₁: L₁=12.7 cm if L₂>L₁, L₁=L₂ otherwise)
 - scaling factor for light yield I₀
- \rightarrow achievable longitudinal resolution depends mainly on: light yield

attenuation length of WLS fiber

▲ ■ • : average $\varepsilon_{\text{trigger}}$ along detection unit >80% and variations of $\varepsilon_{\text{trigger}}$ along detection unit <10%

\rightarrow to do /necessary:

- WLS fibers with short attenuation length
- modified design of detection unit (WLS fibers inside scintillator) to increase light yield

Light Sharing – First Tests of Simple Modelling

- pure (non-doped) WLS fiber, Kuraray Y-11(400), 250 μm, multi-cladding
- 1m long

PMMA polymer doped WLS Fiber

- WLS fiber with reduced attenuation length
 - Kuraray WLS fiber Y-11(400), 250 μm, multi-cladding, attenuation decribed by two components: L1 = 12.7 cm, L2 = 211 cm
 - fiber core (polystyrene) doped with PMMA (polymethylmethacrylate) polymers as light scattering dopant
 - Kuraray: tests with 0.100 wt%, 1.00 wt%, 2.00 wt% and 3.00 wt% simple description: only one component λ

- 1D 16-channel module
 - optimize filter of signal processing system
 - explore full potential of 16-channel module, if possible in combination with current ³He detector
 - explore potential market, further applications
- 2D approach (within SINE2020)

pixelated

design of detector concept with reasonable pixel size (HEIMDAL, BEER beam lines?)

light sharing approach

- tuning of "simple modelling", e.g. including paramters L₁ and I₀₁/I₀₂ which were achieved in measurement with 1m (undoped) WLS fiber
 - → redo simulation for expected longitudinal resolution as function of attenuation length (and scaled light yield)
- extract longitudinal resolution from measurement with 1m (undoped) WLS fiber
- new design for detection units with increased light collection
- build new detection units with best matching WLS fiber (concerning attenuation length)

detector

- Jean-Baptiste Mosset (partially payed by SINE2020)
 Alexey Stoykov
- M.H.
- Dieter Fahrni Andi Hofer
- electronics
- Urs Greuter
- Alexey Gromov
- Nick Schlumpf

POLDI beamline scientistTobias Panzner

Malte Hildebrandt, PSI

SINE2020 WP9, Abingdon, 14.01.2016 – page 23

Malte Hildebrandt, PSI

SINE2020 WP9, Abingdon, 14.01.2016 – page 24