Muon Experiments

Stephen Cottrell STFC Rutherford Appleton Laboratory, UK

Outline of talk

- µSR technique, experiment and data
- Applications of the Technique
- Sources, Instruments and Detectors
- Projects in NMI3 and SINE2020

Introduction

The µSR technique...

High energy protons (800 MeV at ISIS)

Stop in sample, (stopped in ~1mm water)

> **Stop as** μ⁺ or Muonium (Mu: μ⁺e⁻)

Evolve in local environment

Positrons preferentially emitted in direction of muon spin Follow Muon Spin Polarisation $\pi^+ \rightarrow \mu^+ + v_{\mu}$ 4 MeV **muons** are **100% spin polarised** spin ½, mass 0.11m_p

Decay, lifetime ~2.2µs $\mu^+ \rightarrow e^+ + v_e + v_\mu$ Detect Positrons

The Experiment...

Data...

Applications of the Technique

Applications of µSR ... The muon as a magnetometer

Magnetism

Superconductivity

Ionic Conductors

Probe internal fields:

sensitive to small moments (nuclear and electronic) and spin fluctuations

Applications of µSR ... The muon as an analogue for 'H'

Polaron/Soliton Motion

Molecular Dynamics

Probe for 'hydrogen' states and reactions: sensitive method of studying charge states, dynamics and reactions

A Complementary Technique...

Sources, Instruments and Detectors

Where we do muon experiments...

But not all facilities are equal...

The beams at: ISIS and JPARC are 'pulsed' PSI and TRIUMF are 'continuous'

What does this mean for µSR?

Beam Structure...

at a 'continuous' source...

at a 'pulsed' source...

Muon rate of 10⁵/s; Average time between muons 10 μs; **Measure one muon at a time!** Implant 1000s muons/pulse; Measure 1000s muons simultaneously!

Instruments...

at a 'continuous' source...

at a 'pulsed' source...

EMU

High instantaneous rates at pulsed sources require a highly pixelated detector array

Experiment...

at a 'continuous' source...

at a 'pulsed' source...

- High time resolution, (> 4 GHz)
- Random background distorts spectra at long times
- Rate limited (no second muon/positron in observation window)

- Time resolution limited by muon pulse width (Δt 80ns → ~10 MHz)
- Low background, measurement of µSR signal to long times
- High rate (full beam intensity usable if you have enough detectors with a short dead time!)

Data...

at a 'continuous' source...

at a 'pulsed' source...

Muon precession ~1.3GHz, 9.8T

Clean data to >10 $\times \tau_{\mu}$ in ~1.5 hrs (250Mev)

Sources are complementary

Detector requirements quite different

Projects in NMI3 and SINE2020

NMI3-I:

SiPMs for High Field Instruments at PSI

SiPM detectors developed at PSI to meet challenging requirements of new High Transverse Field Instrument

Focus on timing resolution and performance in a magnetic field:

SiPM Detector array

Resolution independent of field

Very successful for measuring at PSI with a continuous beam structure

NMI3-II: SiPMs for 'Pulsed' beams

Applying SiPM technology at pulsed sources brings new challenges ...

Very high instantaneous rates demand:

- High detector segmentation
- Short detector deadtimes following each 'hit'

Future MuSR Detector Array

Currently studying the suitability of SiPMs for pulsed muon beams ... Focus on *deadtimes*

(see later talk by Dan Pooley)

SINE2020: Emergent Detector Technologies...

Tasks

- 9.4 Emergent Detector Technologies for neutron scattering and µSR
- 9.4.3 Silicon Photomultipliers for µSR

Deliverables

D9.8 (Y2, Q4): Report discussing an evaluation of commercial SiPMs for muon spectroscopy detector arrays

D9.13 (Y4, Q4): Report discussing alternative detector technologies for scintillation-based arrays for muon spectroscopy

Coordinator: STFC, Partner: PSI

