PAUL SCHERRER INSTITUT

J.-B. Mosset, A. Stoykov, M. Hildebrandt :: NUM :: Paul Scherrer Institut

Neutron detectors based on ZnS:Ag/⁶LiF read out with WLS fibers and SiPMs

SINE2020 WP9 Industry Day, PSI, 13.06.2017

The development of a 2D thermal neutron detector – which is our work within SINE2020 WP9 – is based on our recent work on a 1D detector.

 \rightarrow content of the talk: • technical details of 1D thermal neutron detector

approaches for 2D thermal neutron detector

The development of a 2D thermal neutron detector – which is our work within SINE2020 WP9 – is based on our recent work on a 1D detector.

\rightarrow content of the talk: • technical details of 1D thermal neutron detector

approaches for 2D thermal neutron detector

The neutron detection system is based on:

• ZnS:Ag/⁶LiF scintillation screen

• wavelength shifting (WLS) fibre

The new approach includes:

• Silicon Photomultiplier (SiPM)

SiPMs are used everywhere, except in neutron scattering instrumentation!

• digital signal processing system

- established technology, appropriate properties
- but: opaque, long emission time
 → small number of photons spaced out in time
- efficient, high and uniform light collection
 → less fibres, no "light sharing", no coding
- fast, single photon counting capability
- small
- insensitive to magnetic fields
- cheap
 - \rightarrow each detection element coupled to single SiPM
- but: cross talk, dark counts
 - \rightarrow influence on neutron signal extraction
- □ analyse temporal distribution of SiPM pulses
 → neutron signal extraction

Neutron Detection Unit

ND2:1scintillation screen (Scintacor)

- 0.25 mm and 0.45 mm
- grooves machined in 0.45 mm screen

WLS fibres: Kuraray Y11(400)M

- Ø = 0.25 mm
- embedded in grooves of scintillator

Eljen EJ-500 optical epoxy

detection unit

- front end: fibres polished and mirrored
- rear end: 12 fibres glued in plexigas block, polished and connected to SiPM

detection unit with 4 layers

- neutron absorption probability >80% @1.2 Å
- intrinsic time resolution < 1 μs

ightarrow efficient and uniform light collection

→ less fibres, no "light sharing", no channel coding compared to clear fibre and PMT readout

1-channel, 4-layer (full-length) unit

→ this unit represents elementary building block of full-size detector

Neutron Detection Unit

- efficient, high and uniform light collection is essential!
 → requires dedicated design of detection unit (bar, pixel, etc.)
- example: 1D neutron detection unit for strain scanning neutron diffractometer POLDI at PSI
 - within (2.4×200) mm² channel: optimized light collection using 12 WLS-fibers (Ø 0.25 mm) embedded and uniformly distributed in "scintillation volume", thickness 2.8 mm
 - each channel/unit readout by individual (1×1) mm² sensitive area SiPM

neutrons

SINE2020 WP9 Industry Day, PSI, 13.06.2017 - 6

Machining of Scintillator

Machining of Scintillator

Manufacturing of Detection Unit

Manufacturing of Detection Unit

Manufacturing of Detection Unit

16-Channel Module

- properties: single-photon counting capability
 - high photon detection efficiency PDE ~40 % (at emission wavelength of WLS fiber)
 - low operation voltage
 - high gain: 10⁵ to 10⁶
 - compact, robust, non-expensive
 - insensitive to magnet fields

- drawback: (thermal) dark counts:
- ~80 kHz/mm² at room temperature
- increasing with raising temperature
- increasing with accumulated radiation damage
- ightarrow weak signals might not be extracted from dark count background
- ightarrow additional limit on trigger efficiency

postpone technical discussion on SiPM requirements to next meeting with participation of Hamamatsu

Electrical & Optical Coupling of SiPM

Optical Coupling of SiPM

Alignment of SiPM

otherwise noted: ±0.1

Alignment of SiPM

SINE2020 WP9 Industry Day, PSI, 13.06.2017 - 17

Alignment of SiPM

SINE2020 WP9 Industry Day, PSI, 13.06.2017 - 18

Mechanics of 16-Channel Module

1D Detection Module

- 16ch module for POLDI time of flight neutron diffractometer
 - 1D resolution (2.5×200) mm², gapless arrangement in large detector banks
 - channels individually manufactured & assembled
 → single detection units exchangeable
 - (1×1) mm² SiPM can be used for single channel
 - → longest life-time in radiation environment
 ~10 years at POLDI and room temperature
 - signals from each channel processed individually
 - \rightarrow maximum possible count rate capability
- references: [1] J.-B. Mosset *et al.*, NIM A 845 (2017) 494-498 [2] A. Stoykov *et al.*, IEEE TNS 63 (2016) 2271

- based on analysis of temporal distribution of single-cell SiPM signals
 → neutron events detected as an increase of the density of single-cell SiPM signals
- blocking times can be much shorter than emission time of scintillator

G-Amp : Gaussian amplifier (shaping time $sh-time = 0.25 \mu s$)

- Discr SDi: leading-edge discriminator (threshold thrSDi)
- **Gen :** non-retriggerable monoflop (pulse width b-time = 4 \cdot sh-time)

Hildebrandt

measured with Hamamatsu MPPC S13360-1350PE (1.3 x 1.3 mm²)

Neutron detection efficiency at 1Å (10Å), %	65 (80)	55 (70)
absorption probability at 1Å (10Å), %	80 (100)	
trigger Efficiency ^(a) , %	80	70
Background count rate, Hz/ch	< 10 ⁻³	
Gamma sensitivity (with ⁶⁰ Co)	< 10 ⁻⁷	
Multi-count ratio	< 10 ⁻²	
Dead time ^(b) , μs	6	1.5
sustainable neutron count rate ^(c) , kHz/ch	< 17	< 70
sustainable SiPM dark count rate ^(d) , MHz	< 6	< 6
SiPM lifetime ^(e) , years	> 10	> 10

- (a) to fulfill BGM-conditions at chosen dead-time
- (b) dead-time $\approx 6 \cdot$ sh-time (with appropriate blocking time: b-time $\approx 4 \cdot$ sh-time)
- (c) to ensure the dead-time caused event losses $\leq 10\%$
- (d) SiPM dark count rate up to which: E constant, B ok
- (e) detector operation time until SiPM dark count rate reaches its sustainable value; in POLDI radiation environment: dark count increase ≈ 100kHz/mm²/year at RT

The development of a 2D thermal neutron detector – which is our proposal within SINE2020 WP9 – is based on our recent work on a 1D detector.

→ content of the talk: • technical details of 1D thermal neutron detector

approaches for 2D thermal neutron detector

Hildebrandt

SINE2020 WP9 Industry Day, PSI, 13.06.2017 - 24

2D – Light Sharing Approach

2D – Pixelated Design (2D gapless coverage)

individual pixel readout scheme (V1a, V1b):

- ZnS:⁶LiF scint. (0.45mm + 0.25mm thick strips)
- grooves in 0.45mm strips
- embedded WLS-fibers Ø = 0.25mm
- each pixel is readout by a single SiPM

coded pixel readout scheme (V2):

- ZnS:⁶LiF scint. (0.45mm + 0.25mm thick strips)
- grooves in 0.45mm strip
- single embedded WLS-fiber Ø = 0.25mm
 - bending the fiber at T \approx 60 °C
 - min. bending diameter ≈ 4.5mm
- \rightarrow suitable for XY-coding

e.g. matrix of 10 \times 10 pixels can be readout with 20 SiPMs with (1 \times 1) mm² active area

Hildebrandt

2D – Pixel Arrangements into Arrays

- tilted pixel arrangement to adjust:
 - arrangement of WLS fibers
 - "effective" pixel size
 - "effective" neutron path length in scintillator for neutron absorption probability according requirement
- \rightarrow intrinsic time resolution:
 - uncertainty of neutron interaction time along length in neutron flight direction $L_n = \sigma_{int} [\mu s] \approx 0.073 \cdot L_n [mm] \cdot \lambda [Å]$
 - → V1b: $\sigma_{int}[\mu s] \approx 0.3 \cdot \lambda$ [Å] V1a, V2: $\sigma_{int}[\mu s] \approx 1.5 \cdot \lambda$ [Å]

SINE2020 WP9 Industry Day, PSI, 13.06.2017 - 27

- due to scattering, some neutrons will be absorbed in "wrong" channel
 → leads to deterioration of spatial resolution
- pixel array, individual pixel size (3×10) mm²
- to preserve good spatial resolution also at short wavelengths:
 - thick pixels at large tilting angles (pixels V1b)
 - additional absorbing plates in case of thin pixel at small tilting angles

Performance (2D Detector)

Pixel type	V1	V2
Readout type	individual	coded, M=10
Neutron detection efficiency at 1Å, %	65	50
absorption probability at 1Å, %	80	80
trigger efficiency, %	80	60
Background, Hz	10-3	
Gamma sensitivity	10-7	
Multi-count ratio	10-2	
Dead time of readout channel Δ_d , μ s	6	1.5
XY-coincidence resolving time Δ_c , µs		0.5
Max. local instantaneous peak rate, kHz/pixel (required for NPD detector at ESS ≈ 1 kHz/pixel)	17	2.5
Sustainable SiPM dark count rate, MHz	< 6	< 4
SiPM lifetime ^{a)} , years	> 10 (needs to be confirmed on site)	

a) estimate for HEIMDAL NPD detector at ESS for global time-averaged neutron flux on sample = $2 \cdot 10^9 \text{ } 1/\text{cm}^2/\text{s}$

Neutron Detector - PSI Approach

Requirements for materials and components:

- ZnS:Ag/⁶LiF scintillation screen
- high neutron absorption efficiency
- high light yield
- high transparency
- wavelength shifting (WLS) fibre

• Silicon Photomultiplier (SiPM)

- high "conversion" efficiency (c_{dye} vs λ_{att})
 single-sided readout: long λ_{att} double-sided readout: λ_{att} ≈ L_{detectionunit} homogeneous
- high PDE
- low dark count rate
- low after pulsing
- radiation hard (n, γ)
- optical coupling
 - SiPM exchangeable (depending of cost SiPM vs cost detection unit)
 - FPGA-based
 - scalable

manufacturing

Malte Hildebrandt, Paul Scherrer Institut

IEEE NSS, Strasbourg, 03.11.2016 – 31

* e.g. Scintacor, scintillation screen ND 2:1

- neutron absorption: ⁶Li + ¹n \rightarrow ³H + ⁴He + 4.79 MeV , σ = 940· λ / 1.8barn ([λ] = Å)
- high light yield: 160 000 photon / neutron
- non-transparent: collected light is □ limited → small number of detected photons
 non-uniform → large dynamic range of signals
- Iong emission time:
 - $\, ^{\rm o}\,$ 25% photons within $\, -1\, \mu s$
 - $^{\rm o}~$ 60% photons within ~ 10 μs
 - → artificial dead time needs to be implemented in signal processing to avoid multiple triggers

Kuzmin *et al.*, Journal of Neutron Research 10 (2002) 31-41 1.0 0.8 (i) 0.6 (i) 0.7 (i) 0.6 (i) 0.7 (i) 1 (i) 1

requirements:

- high neutron absorption efficiency
- high light yield
- high transparency

POLDI neutron beam line at SINQ (PSI)

- time-of-flight neutron diffractometer
- strain measurements: accurate determination of lattice spacings

current detector

- single ³He wire chamber (1-dimensional)
- in operation since 2001 refurbishment 2012/13 gas cleaning 2016/17

POLDI upgrade program ("on stand-by")

- two oppositely placed detector banks
- rather stringend spatial boundary conditions:
 - \rightarrow 2 modules on each side

detector requirements

detector modules	2 x 2
radius	2000 mm
channel width / height	2.5 mm / 200 mm
channels per module	400
size of one module	(1 x 0.2) m ²
neutron wavelength	1-6Å
detection efficiency	≥65%@1.2Å
time resolution	≤ 1 µs
sustainable count rate (per channel)	4 kHz
gamma sensitivity	< 10 ⁻⁶
quiet background rate (per channel)	< 0.003 Hz

remark: our detector design (16-ch module) fulfils these requirements!

Signal Processing System

