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Experimental setup: RPC plateau for cosmic muons (MIPs)

3

Double-gap 10B-RPC

Plateau shift: cosmic muons (MIPs) versus  thermal neutrons



Thermal neutrons

MIPs
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Double-gap 10B-RPC

Plateau shift: cosmic muons (MIPs) versus  thermal neutrons



Gas
Density (1 atm, 20ºC) 

(g/cm3)
I  

(eV)
dE/dx

(keV/mm)
Np

[cm-1]

C2H2F4 (R134a) 4.24 x 10-3 95.029 0.7482 81.6

Energy loss in the working gas 

[arXiv:1505.00701v1 [physics.ins-det] ]

 Minimum ionizing particles (MIPs)


4He and 7Li fission fragments

Gas:  C2H2F4 @ 1 atm

Gas-gap width: 0.35 mm
10B4C thickness = 1.15 mm

Neutrons:  =4.7 Å 

Energy deposited in the RPC gas-gap 

computed with GEANT4
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Double-gap 10B-RPC

Plateau shift: cosmic muons (MIPs) versus  thermal neutrons



Double-gap 10B-RPC: sensitivity to gamma rays

Experimental setup: gamma sensitivity for the 0.511 MeV gamma rays  

PM1/SC1 

PM2/SC2 

22Na

RPC Detector 
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Det. Efficiency = N1/N2

►N1=PM1 & PM2 & RPC

►N2=PM1 & PM2

Energy windows are set by  the TSCAs

0.511 MeV

1.27 MeV

22Na - source



Double-gap 10B-RPC: sensitivity to gamma rays

Solid angle (Ω1) computed with ANTS2

22Na Disk source 

PM1/SC1 
PM2/SC2 

22Na

RPC Detector 

Experimental setup: gamma sensitivity for the 1.27 MeV gamma rays  
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►N1=PM1 & PM2 & RPC

►N2=PM1 & PM2

Det. Efficiency = N1/(N2 x dΩ1) 



Double-gap 10B-RPC: sensitivity to gamma rays

Experimental results

Sensitivity to 0.511 MeV and 1.27 MeV gamma rays

Plateu for neutrons 

Plateu for MIPs
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Detector model

 Double-gap 10B-RPC inside in an Al box

 Al-cathode  coated (both sides) with 1.15 um 
thick 10B4C layer (97% enrichment) 

 Area:10x10 cm2

MC Simulations

 Geant4 10.5.1 with QGSP-BERT-HP reference physics 
list

 Tests with other relevant physics lists (QGSP-BIC-HP 
and QGSP-BIC-AllHP): showed nearly identical results

Distribution of the energy deposited in the RPC gas-
gap by the reaction products of  neutron capture in 
10B for the “Modified design”

5 x105 neutrons (1.8 Å) were sent in a pencil beam  
perpendicular to the RPC 

Two RPC designs were simulated

Original Modified

Gas-gap width 0.35 mm 0.2 mm

Al plate thickness 0.5 mm 0.3 mm

Glass plate thickness 0.5 mm 0.25 mm

Double-gap 10B-RPC: sensitivity to gamma rays
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Original 
design

Modified 
design

107 gammas were sent in a pencil beam  
perpendicular to the RPC for each energy (511 keV 
and 1.27 MeV)

Fractions of primaries resulting in 
energy deposition in the gas-gaps for a 
energy threshold of 20 keV

Gamma rays 
─ 1.27 MeV
─ 0.511 MeV

Gamma rays 
─ 1.27 MeV
─ 0.511 MeV

Gamma energy
RPC design

Original Modified 

0.511 MeV 610-6 ~110-6

1.27 MeV 810-6 ~110-6

Double-gap 10B-RPC: sensitivity to gamma rays
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 High rate 10B-RPCs: prototypes with low resistivity electrodes are being 

assembled for beam tests

Plate of low-resistive silicate glass 

Bulk resistivity ~1010 .cm) 

[J. Wang et al., Nucl. Instrum. Meth. A 713 (2012) 40]

Bulk resistivity of the plates  prepared for tests:  
8.6  107 .cm ; 1  108 .cm and 2  1010 .cm

Plates of ceramics composite provided by 

L. Naumann, Forschungszentrum 
Dresden-Rossendorf

[A. Laso Garcia et al., Nucl. Instrum. Meth. A 818 (2016) 45]

Vef f: Effective voltage applied across the gap
Vap: Applied voltage,
I: Counting current drawn by the detector in area A
R: Electrical resistance seen by this current
Ρ: DC bulk resistivity of the electrode resistive material 

Work in progress



10B-RPC status before SINE 2020

 Single-gap RPC in a hybrid configuration

 RPC cathode  (Al) coated  with 2um thick layer of  10B4C 
at the ESS Detector Coatings Workshop 
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 The first prototype assembled in LIP and tested at ILL

 Sensitivity to thermal neutrons demonstrated

 Sub-millimeter spatial  resolution observed (0.8 mm FWHM)

1D – sensitive!



 Single-gap RPCs with  different gas-gap widths (0.35 mm and 1 mm) tested
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 For 2D position sensitivity a new scheme for signal pickup electrodes implemented

Each strip is readout by a charge sensitive amplifier 

 Vertical strips (X)

 Pitch = 1.5 mm

 Width = 1.3 mm 

 Horizontal strips (Y) 

 Pitch = 2.0 mm 

 Width = 0.5 mm 

Progress in 10B-RPC development within SINE 2020



 Prototypes tested at FRMII/ TREFF neutron beam line (λ= 4.7 Å)
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Back side

n-beam

DetectorFEE

DAQ

 Both RPCs showed a wide plateau

 Detection efficiency (single-gap) ≈ 12.5%

 The new 2D readout scheme  is feasible

 Thinner gas-gap shows higher spatial 

resolution  and requires lower voltage

 Spatial resolution better than 250 μm FWHM  

demonstrated for both coordinates (x,y)

Cd Mask (1mm thick) 

Progress in 10B-RPC development within SINE 2020



 Multilayer architecture introduced to address low detection efficiency
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Progress in 10B-RPC development within SINE 2020
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 A prototype with 10 double-gap 10B-RPCs (20 layers of 10B4C) was build at LIP and 

tested at FRMII/ TREFF neutron beam line

Cd Slit 

Detector

 Spatial resolution < 250 μm FWHM

(all 10B4C layers with the same thickness : ≈ 1.15 μm)
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 Det. Efficiency (λ= 4.7 Å) > 50%

Good agreement with simulations 
using ANTS2 Toolkit 

3D-positions of reconstructed neutron events

Progress in 10B-RPC development within SINE 2020
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 Towards 10B-RPC detector with high counting rate

Optimization of individual thicknesses of converters layers 

(semi-automatic optimization tool of ANTS2)

Same thickness for all 
10B4C layers: 1.15 µm
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10B4C layers thickness 
optimized for each RPC

Progress in 10B-RPC development within SINE 2020
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 Analysis of materials impact on detector performance

Progress in 10B-RPC development within SINE 2020

Neutron absorption and scattering in the Multilayer RPC detector materials
(10 double gap 10B-RPCs)



Future
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 Increase the counting rate capability

• Detector design optimization

• Low resistivity materials for RPC electrodes

• Front end electronics with higher sensitivity

• Effect of the temperature

 Reduce sensitivity to gamma rays 

• Optimize geometry and materials

• Pulse shape analysis for MIPs and HIPs

 Improve spatial resolution and uniformity

• Statistical reconstruction



Thank you for your attention 



Counting rate improvement

 Low resistivity materials: e.g.  Ceramics,  doped glass, PEEK loaded 

with Carbon (ρ =  1-3 x109   Ω.cm) 

 Thinner resistive electrodes 

 Increase the temperature (glass resistivity decreases)

 Front end electronics with higher sensitivity

 Avalanche mode
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Counting Rate



Counting Rate
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Ceramic RPC
Electrodes resistivity of ≈ 109 Ω·cm



Other materials with lower bulk resistivity => higher counting rate capability RPCs 
Work in progress @ LIP-Coimbra in the framework of a AIDA2020 project

New technology ESD material, Krefine

“linear” correlation between rate 
and current until 200 kHz.cm-2

200 kHz.cm-2
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Counting Rate



Double-gap 10B-RPC: sensitivity to gamma rays

Experimental results
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10B-RPCs: Single-gap studies - Tests with Neutrons

PHS of the cathode signals (log scale)
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Spatial resolution considerations

10B4C

Resistive Ink 
(HV distribution)

Thermal neutron

Insulator

Al - Cathode

Glass - Anode

Gas gapE

Signal pick-up strips: X, Y

a

Li
+

-HV

GND

The good spatial resolution can be explained by:

 Anti-Parallax effect 

 The possibility to build RPCs with very thin gas-
gaps (down to 0.1 mm)


10B4C thickness: 2 μm

 Neutron wavelength: 1.8 Å
 Gas-gap widths: 0.35, 1.0 and 2 mm
 Gas: C2H2F4 (20ºC and 1 atm)

Distributions of the 4He and 7Li particle ranges 
in the gas-gap, projected in the lateral 
direction (parallel to the RPC plates) 
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10B-RPCs: Hybrid Design

Single-Gap RPC 

Double-Gap RPC 

Advantages of RPCs

 Modular detector designs and good scalability

 Well suited for multilayer architectures

 Good spatial and time resolution (< 1ns)

 Well-established technique (e.g. large area detectors for high 
energy physics) and low cost per unit area

 Safe detector: current limited by the resistive plates and 
readout is decoupled from HV

Challenges

 Low thermal neutron detection efficiency  of single neutron 
converter layers

 Gamma sensitivity and counting rate 

 Metallic cathodes

 Deposition of 10B4C on Al substrates is already a well established technique [1]

 But, 2D-position readout must be implemented on the same plane – Resistive anode side

[1] Carina Höglund et al., Stability of 10B4C thin films under neutron radiation, Radiation Physics and 
Chemistry, Vol. 113 (2015) Pg. 14–19.
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RPCs – Resistive Plate Chambers

Typical gas mixture:

 Freon R134a (tetrafluoroethane): high electron affinity  

(electron capture  avalanche confinement);

 SF6 (sulphur hexafluoride): 1 to 10% (to  suppress streamer 

discharges);

 C4H10 (Iso-Butane): 0 to 5% (to prevent  photon induced 

streamers.
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