
GA No 654000 SINE2020 HORIZON2020

Deliverable Number: D10.1

Deliverable Title: Report on Guidelines and Standards for Data Treatment software

Delivery date: Month 18

Leading beneficiary: 1 – ILL, 2 – ESS, 3 – STFC, 4 – PSI, 6 – Juelich

Dissemination level: Public

Status: final

Authors: Anders Markvardsen

 STFC, ISIS Facility, UK

Project number: 654000

Project acronym: SINE2020

Project title: World-class Science and Innovation with Neutrons in Europe 2020

Starting date: 1st of October 2015

Duration: 48 months

Call identifier: H2020-INFRADEV-2014-2015

Funding scheme: Combination of CP & CSA – Integrating Activities

GA No 654000 SINE2020 Horizon2020

2

Abstract

This report summarises outputs from task 10.2 of WP10. The purpose of this task is to provide
guidelines and standards that should be used to exploit and interface to neutron data treatment
software developed in this WP.

New, and improvements to existing, neutron data treatment software are continuously needed. The
reasons for this is that the field of neutron scattering is not static; there is a continuous development
of new instruments, new detectors and detector electrons, improvements in computing networks
and hardware, and most topical in relation to the building of ESS.

This report, in addition to an introduction, has three main sections:

• Based on answers from a questionnaire broad guidelines are derived for how to best
develop software for neutron data treatment, where the questionnaire targets existing well-
established data treatment software and look for commonalities between these.

• For the specific use case of writing data loaders for complex neutron data formats, what
best advices, i.e. guidelines, can be given for documenting such loaders?

• Many data treatment software depends critically on fitting. This report presents a new
benchmarking library for comparing fit minimizers; a required step towards providing a
standard for comparing the performance and stability of minimizers used for
treating/analysing neutron data.

The proposed guidelines derived from the questionnaire were discussed in detail in a presentation at
the SINE2020 workshop at ILL April 2017, where many participants provided inputs. The guidelines
presented take into accounts these comments and these had the broad agreement of the 58
participants of this meeting.

GA No 654000 SINE2020 Horizon2020

3

Table of contents

1 Introduction .. 4

1.1 What are guidelines and standards .. 4

1.2 Related publications ... 4

2 Guidelines based on identifying commonality from a software questionnaire 5

2.1 Software setup, communication & support .. 6

2.2 Software architecture ... 6

2.3 Software development ... 7

2.4 Software quality .. 8

2.5 In summary guidelines based on questionnaire ... 8

2.6 How do guidelines improve software interoperability ... 9

2.7 Additional guidelines suggested at SINE2020 workshop April 2017 10

3 Guidelines for documenting data loaders .. 10

4 Benchmarking tool for fit minimizers ... 12

5 Acknowledgements ... 14

6 Tables summarising results from the questionnaire .. 15

7 Appendix: In detail, results from software questionnaire .. 19

7.1 Reply to questionnaire: BornAgain ... 19

7.2 Reply to questionnaire: Mantid .. 23

7.3 Reply to questionnaire: McStas .. 30

7.4 Reply to questionnaire: MuhRec .. 35

7.5 Reply to questionnaire: SasView ... 39

GA No 654000 SINE2020 Horizon2020

4

1 Introduction
Software functionality is not determined by guidelines and standards. However, following such help
ensure that software is easier to maintain, easier to extend as well as encourage better
interoperability and sharing of ideas within a community.

This document aims to provide guidelines for how to write new (and modify existing) neutron data
treatment software.

1.1 What are guidelines and standards
We come across these terms quite often and many people frequently use these terms to be mean
different things (see for example: https://www.linkedin.com/pulse/20140611162901-223517409-
difference-between-guideline-procedure-standard-and-policy).

Here the Oxford Dictionaries (https://en.oxforddictionaries.com/) definition of these terms will be
used:

Guideline: A general rule, principle, or piece of advice.
‘the organisation has issued guidelines for people working with prisoners’

Standard: A required or agreed level of quality or attainment.
‘half of the beaches fail to comply with European standards’

Using the definition of guidelines and standards above, this report will be providing guidelines;
guidelines which could be used as input into creating a standard for neutron data treatment
software separately.

1.2 Related publications
The European FP7 projects, NMI3-II (www.nmi3.eu) and PaNData (www.pan-data.eu) each produced
a report not directly on guidelines and standards, but closely related to this. These two reports are:

2011: PaN-data Europe, D2.2: Common policy framework on analysis software

A PaNData deliverable on a policy framework for analysis software for European photon and
neutron facilities. It is an attempt at a policy on analysis software for both photon and neutron
facilities. However, it is also applicable to other domains such as control system software, database
applications, and office automation tools. Perhaps one challenge of this policy is that it encompasses
a large scope.

2014: NMI3-II Data Analysis Standards (WP6) Task 2: Report on solutions for developing a common
software infrastructure

This report gathered information about infrastructure used by neutron/muon data analysis
software, and from these it derives recommendations. This report demonstrates one challenge of
providing software recommendations in general. Even though the report is only three years old,
some of its recommendations have been superseded by advances in technology; For example,
improvements to cloud hosting sites, such as Github, have become an attractive way to host code.
Encouragingly, many of the recommendations summarised in the last section of this report on
infrastructure remain valid today and coincide with guidelines presented in this report.

https://www.linkedin.com/pulse/20140611162901-223517409-difference-between-guideline-procedure-standard-and-policy
https://www.linkedin.com/pulse/20140611162901-223517409-difference-between-guideline-procedure-standard-and-policy
https://en.oxforddictionaries.com/
http://www.nmi3.eu/
http://www.pan-data.eu/

GA No 654000 SINE2020 Horizon2020

5

2 Guidelines based on identifying commonality from a software
questionnaire

The purpose of this software questionnaire is to collect information about the techniques, methods
and tools used to develop software in the neutron and muon community. Then from this
information suggest guidelines for how existing and new software for neutron data treatment
software is best developed.

Many neutron data treatment software have been developed and a number of these are no longer
maintained.

For this questionnaire five actively developed neutron software packages were considered. These
are:

• BornAgain (http://bornagainproject.org)

• Mantid (http://www.mantidproject.org)

• McStas (http://mcstas.org)

• MuhRec (https://www.psi.ch/niag/muhrec)

• SasView (http://www.sasview.org)

These five software are all key to SINE2020 and further sample different aspects of neutron data
treatment: the data analysis of grazing incidence SANS (BornAgain), software focussed on data
reduction (Mantid), instrument simulation software (McStas), neutron imaging software (MuhRec)
and software for the data analysis of SANS (small-angle neutron scattering) (SasView).

The questionnaire had questions on four sub-topics:

A. Software setup, communication and support
B. Software architecture
C. Software development and software quality
D. Any additional suggestions/comments

The four tables that summarise the results from the questionnaire are found in Section 6, where
sub-topic C has been split into two tables. The full results from the questionnaire are presented in
the Appendix.

The information in the tables in section 6 provides insight into five successful neutron data
treatment software, and is a general recommended read for any new/existing software developer or
project manager in this field.

In the following four subsections key software commonalities from the tables are identified and
subsection 2.5 provides a summary of the guidelines drawn from this questionnaire. The following
subsection discusses the community benefits of using the summarised guidelines.

Proposed guidelines derived from the questionnaire were discussed in detail in a presentation at the
SINE2020 workshop at ILL April 2017, where many participants provided inputs. The guidelines

http://bornagainproject.org/
http://www.mantidproject.org/
http://mcstas.org/
https://www.psi.ch/niag/muhrec
http://www.sasview.org/

GA No 654000 SINE2020 Horizon2020

6

presented in the next four sections take into accounts these comments and these had the broad
agreement of the 58 participants of this meeting. Furthermore, any additional guidelines proposed,
not relating to questions in the questionnaire, are captured in subsection 2.7.

2.1 Software setup, communication & support
Answers to questions on software setup, communication and support are shown in table 6.1 in
section 6.

Observations from the data in table 6.1 are shown below.

Table 2.1. The first column refers to row numbers in table 6.1 from which guidelines are derived.

Row Guideline and comments

1 As a project grows the advice is to apply a governance model.

3 Which Open Source licenced is used (or planned to be used) varies, although the use of the
GNU General Public License (GPL) is most common. The derived guideline is to: use an
Open Source license, such as GPL. The GPL Open Source license is restrictive, but
attractive for neutron data treatment software, and for most cases the GNU project
recommend using GPL licence, see https://www.gnu.org/licenses/license-
recommendations.html. Freely distributed software is attractive for neutron facilities, since
neither facilities nor its users are then required to pay for, organise and maintain software
licences.

6 Provide user support, as a minimum through email support.

7 Provide user documentation, such as version controlled user documentation.

8 With every new release, as a minimum, email out release notes to user mailing-list. As with
user documentation these are advised to be version controlled.

9 Software release cycles of a few times to once a year is common, and suggests that release
cycles of this length work well with facilities’ needs. Furthermore, having regular releases
ensures that users know the software is still supported.

10-
12

Support for multiple operation systems (OSs) is also advised. This is needed to support
different facilities operating systems preferences and individual user preferences.

2.2 Software architecture
Answers to questions on software architecture are shown in table 6.2 in section 6.

Observations from the data in table 6.2 are shown below.

Table 2.2. The first column refers to row numbers in table 6.2 from which guidelines are derived.

Row Guideline and comments

https://www.gnu.org/licenses/license-recommendations.html
https://www.gnu.org/licenses/license-recommendations.html

GA No 654000 SINE2020 Horizon2020

7

1-3 Best practices software design is advised. Specifically the use of modularisation and designs
to support plug-ins is commonly used by the five software packages questioned.

4 Where software needs to support scripting, the advice is to support this through Python
scripting.

5 All five software packages questioned provide GUI support, and all use or are in transition
to use Qt for this. Therefore, as a general rule Qt should be used for GUI development,
specifically the most recent stable version of Qt. The field of computing is not static, so
new GUI libraries may become available with a maturity and level of user support that is
similar to Qt. Hence, the advice for which GUI library to use will likely eventually change,
and therefore this is an example where the advice given in 1 and 2 should be followed to
create a modular software design where GUI and non-GUI code are not tightly coupled.

6 Design software to be able to accommodate different data formats.

7 Support NeXus/HDF5 data formats. NeXus (http://www.nexusformat.org) is an effort by an
international group to define a common data exchange and archival format for neutron, X-
ray and muon experiments.

2.3 Software development
Answers to questions on software development are shown in table 6.3 in section 6.

Observations from the data in table 6.3 are shown below.

Table 2.3. The first column refers to row numbers in table 6.3 from which guidelines are derived.

Row Guideline and comments

1 The use of C++ and Python is common and the advice is to use either or a combination of
these two languages for neutron data treatment software.

4-5 Code maintenance is common. It is therefore advised that this is made visible to the
software project throughout its life cycle and resourced appropriately. The need for
maintenance (and refactoring) is to some extent a reflection of the fact that the fields of
neutron instrumentation, electronics and computing are continuously advancing.

6 Using a development methodology is advised, such as an agile methodology.

7 Use Git for version control.

8 Use a build tool, such as CMake.

9 Use installer/packaging tool that makes user installation easy.

10 Use an issue/ticketing system, such as GitHub.

GA No 654000 SINE2020 Horizon2020

8

12 Provide developer documentation, such as version controlled developer documentation.

2.4 Software quality
Answers to questions on software quality are shown in table 6.4 in section 6.

Observations from the data in table 6.4 are shown below.

Table 2.4. The first column refers to row numbers in table 6.4 from which guidelines are derived.

Row Guideline and comments

1-2 Some form of automated testing used together with a continuous integration tool is
advised. Jenkins is used by three of the five software packages questioned.

3 For software with a large user base, it is advised to have a user testing period prior to
releases.

4-5 Use static and/or dynamic analysis tools at least occasionally.

6 Do code reviews, using a tool such as GitHub.

7 It is advised to follow a coding standard.

2.5 In summary guidelines based on questionnaire
The table below summarised all the guidelines derived from the questionnaire. For more details on
these see subsections 2.1-2.4.

GA No 654000 SINE2020 Horizon2020

9

Table 2.5. This table summarizes the guidelines derived from the questionnaire. These were discussed in detail in a
presentation at the SINE2020 workshop at ILL April 2017, where many participants provided inputs. The guidelines
summarized here take into accounts these comments and these had the broad agreement of the 58 participants of this
meeting.

Software setup, communication and support:

• As a project grows the advice is to apply a
governance model.

• Use an Open Source license, such as GPL.
• Provide user support, as a minimum

through email support.
• Provide version controlled user

documentation.
• Have regular releases, and aim for a

minimum of once a year.
• With every new release, as a minimum,

email out release notes to user mailing-list.
• Support multiple operation systems.

Software architecture:

• Design software to be modular and to
support plug-ins

• Where software needs to support scripting,
the preference is for Python scripting

• Where the software uses a GUI, the advice
is to use a recent version of Qt

• Design software to be able to
accommodate different data formats.

• Support NeXus/HDF5 data formats.

Software development:

• Use the programming languages C++
and/or Python.

• Factor into your project plan that you will
be doing maintenance work on your code
(~10-30%).

• Using a development methodology is
advised, such as an agile methodology.

• Use Git for version control.
• Use a build tool, such as CMake.
• Use tool that makes user installation easy
• Use an issue/ticketing system, such as

Github.
• Provide version controlled developer

documentation.

Software quality:

• Use a tool for continuous integration and
automated testing, such as Jenkins.

• For software with a large user base, it is
advised to have a user testing period prior
to releases.

• Do code reviews, using a tool such as
GitHub.

• Use static and/or dynamic analysis tools at
least occasionally.

• It is advised to follow a coding standard.

2.6 How do guidelines improve software interoperability
There are many good reasons for following best practice software guidelines such to improve
maintainability, expandability and stability of individual software. However, there are also
community benefits. From the example of the guidelines in the previous section these are:

1. Using an Open Source license such as a GPL is a prerequisite for being able to share code and
ideas expressed in code

2. Using the same programming languages further helps the above, and likewise using the
same libraries, such as Qt

GA No 654000 SINE2020 Horizon2020

10

3. Using the same version control software, build and ticketing tools means that a developer
will find it easier to help and contribute directly to other data treatment software. This is
also of benefit where a developer may temporarily or permanently move from working on
one data treatment software to another

4. Using the same scripting language (Python) means scripts may utilise functionality from
multiple different software packages

5. Having modularized software provides easier sharing of functionality at library/modular level

2.7 Additional guidelines suggested at SINE2020 workshop April 2017
During the presentation discussing in detail guidelines from the questionnaire at the SINE2020
workshop at ILL April 2017, additional guidelines were proposed by participants and discussed.
These are listed below:

1. Get DOI or arXiv citable publication out early for users to cite.
2. Consider providing Youtube video tutorials, in particular for new (non-established) software,

as a way to reach a larger audience quicker.

3 Guidelines for documenting data loaders
The minimum level of documentation which is advised to be provided for any data loader is:

1. User documentation that tells the user how to use the loaders.
2. Developer documentation, including a good level of comments in the code of the loader.

However, raw data files from neutron instruments are often complex since they may store all or
some of the following information:

• Counts from bespoke detector geometries, and information about these
• Information about the sample under study and its environment
• Information about the neutron beam
• Various information about the instrument during data collection
• Other information

Facilities have gradually converted towards using the NeXus format for storing raw data information,
which helps. However, the locations where information is stored in NeXus files varies, which is
something the NeXus committee (http://www.nexusformat.org/) is continuing to work on.

Most data treatment software will only need to load some of this information to do its job.

Therefore and because of data complexity the advice is also to:

3. Include documentation that states what specific information is loaded and where this
information is stored in the software.

This additional documentation has the following benefits:

a. Advanced user documentation. I.e. for users who want to know exactly what is loaded. This
can save confusion and time for developers not having to answers questions on this

b. Top-level developer documentation. Useful for experienced and novice developers to the
software and needing to improve an existing loader and/or write a new similar loader.
Useful for a novice developer of the software to better understand what it takes to support
a new raw data file format. This saves time for any developer who wants the software to
support a new instrument format and time for experienced developers having to explain
how to write a data loader

http://www.nexusformat.org/

GA No 654000 SINE2020 Horizon2020

11

An example of such documentation is shown below for the data loader LoadISISNexus, provided by
Mantid developer Karl Palmen, ISIS and copied from
http://docs.mantidproject.org/nightly/algorithms/LoadISISNexus-v2.html#algm-loadisisnexus:

http://docs.mantidproject.org/nightly/algorithms/LoadISISNexus-v2.html#algm-loadisisnexus

GA No 654000 SINE2020 Horizon2020

12

4 Benchmarking tool for fit minimizers
Fitting is a core functionality in many neutron and muon data treatment software packages,
including most of those worked on as part of this WP.

GA No 654000 SINE2020 Horizon2020

13

Within this WP a first version of a new tool/library for comparing fit minimizers targeted for the
fitting of neutron data has been created, and most of the code development work for this was done
by Federico Montesino Pouzols.

When fitting a function to experimental or simulated data, the function parameters are chosen so
that the model fits the data as closely as possible. A measure of how close a fit is to the data is
defined by a cost function, and the smaller the cost function value the better the model fit the data.

Many minimization methods (minimizers) exists, and currently there does not exist an agreed
standard method for objectively compare minimizers used in neutron data treatment software.
Perhaps this explains why different neutron data treatment software authors favour different
minimizers.

Work has been done as part of this WP to create a new tool for comparing fit minimizers. The main
categories of minimizers relevant to neutron data treatment are:

1. Local minimizers: From an initial guess of the fit function parameter values, the minimizer
will search for the local minimum.

2. Global minimizers: Here, in general, you don’t have a clue what the parameters are and
want the global minimizer to tell you which parameter values are best – globally.

3. Sampling ‘minimizers’: You want to sample effectively an area of parameter space, for
example, for the purpose of mapping out Bayesian posterior probabilities distributions.
Perhaps the word ‘minimizer’ is not perfect in this case, but nevertheless commonly used for
this.

Other related optimisation problems are also relevant for some neutron data treatments including
heavily constrained problems and problems aiming to identify other features such as saddle points.

A tool for comparing local minimizers was targeted (in line with available resources, deadlines and
strongest need). Local minimizers are relevant to many software, including Mantid where this
account for the vast majority of the fitting done with this software.

A tool has been created, which simply consists of a library of fit problems and a few Python files
(currently located
https://github.com/mantidproject/mantid/tree/master/scripts/CompareFitMinimizers) that loops
over the fit problems using different minimizers, where the current set of fit problems targets the
testing of local minimizers.

Work done using this tool has been reported in an SINE2020 news report http://sine2020.eu/news-
and-media/improving-the-fitting-in-mantid-for-neutron-and-muon-data.html, where this tool is used
to compare existing minimizers with a newly developed minimizer by the Computational
Mathematics Group of the STFC Scientific Computing Department, UK named Trust Region.

This tool is now daily system-tested in Mantid and it is manually run before each official release to
check if any new improvements have affected the overall performance of the minimizers. Based on
the latter a summary description of which minimizers to use with Mantid is updated accordingly, see
the top section of the URL: http://docs.mantidproject.org/nightly/concepts/FittingMinimizers.html.

https://github.com/mantidproject/mantid/tree/master/scripts/CompareFitMinimizers
http://sine2020.eu/news-and-media/improving-the-fitting-in-mantid-for-neutron-and-muon-data.html
http://sine2020.eu/news-and-media/improving-the-fitting-in-mantid-for-neutron-and-muon-data.html
http://docs.mantidproject.org/nightly/concepts/FittingMinimizers.html

GA No 654000 SINE2020 Horizon2020

14

This tool has been designed so that it can be used to compare mininizers not just those implemented
in Mantid, but any callable minimizer from Python. For an expert Python developer this can be
achieved by modifying the existing Python files in
https://github.com/mantidproject/mantid/tree/master/scripts/CompareFitMinimizers.
Furthermore, work is currently in progress to make this easier to do by a non-expert Python
developer.

5 Acknowledgements
Thanks to Catherine Jones, STFC, UK for early discussions on writing standards and guidelines.
Thanks to Joachim Wuttke, Wojtek Potrzebowski, Anders Kaestner, Peter Willendrup and Nick
Draper for filling in the questionnaire. Thanks to Thomas Holm Rod for overall help with this report,
Inês Crespo for writing a news article on the fit benchmarking tool and Branwen Hide for help with
SINE2020 financial questions. Thanks to Nick Gould, Jennifer Scott, Tyrone Rees and Roman
Tolchenov for inputs into the fit benchmarking tool. Thanks to Steve Cottrell and Anthony Lim for
proof reading and comments to this report, and to participants of the SINE2020 workshop at ILL
April for valuable comments to the content in this during a presentation.

https://github.com/mantidproject/mantid/tree/master/scripts/CompareFitMinimizers

GA No 654000 SINE2020 Horizon2020

15

6 Tables summarising results from the questionnaire
The next four tables summarise the data from the questionnaire detailed in the Appendix.

An empty field in a table means that no answer was provided to that question.

Table 6.1. Software setup, communication & support. The 1st column shows the row number.

 BornAgain Mantid McStas MuhRec SasView

1 Governance
model

None Project
Management Board
comprised of
members of the
contributing
facilities

Informal. Notion of
core group

Advisory committee The management
team consists of 4
people from
different neutron
facilities

2 Age of project Started 2012 ~9 years ~19 years ~8 years Started 2006

3 License GPL3 GPL3 GPL (2.0) Freeware (1) BSD

4 # of developers 3 ~20 split across 4
sites

~5 2 2 full time, approx.
20 occasionally

5 # of location
software
developed

Single Multiple Multiple Single Multiple

6 User support Through mail and
Web contact form

Via a forum, email
and phone

User mailing list and
emails send directly
to main authors

By direct email
communication

Through the user
mailing list and
tutorial

7 User
documentation

Installation
instructions,
tutorials and
examples online.
Physics manual
(pdf) still
incomplete

Web-based and
built-in docs,
training materials
that can be
followed in your
own time and
which is used in
training courses. (2)

PDF’s, html online
docs, wikis. We are
considering to
create webcasts for
installation and
introductory use.
(3)

Muhrec has a user
manual. No learning
material is provided

Web-based and
built-in
documentation and
a standalone
tutorial

8 How is a release
communicated
to users

 Release notes
emailed to user
mailing list, release
presentations and
annual scientific
steering committee
meeting

User mailing list Currently none E-mail to mailing list
with release notes

9 Release cycles A few releases per
year

~ every 4 months ~ 1 per year About once a year ~ 1 per year

10 Windows
support

Yes yes yes Yes yes

11 Mac support yes yes yes Yes yes

12 Linux support yes yes yes Yes partially

 1 Is being moved to Open Source
 2 And Mantid-Muon introductory material through https://www.e-neutrons.org
 3 And McStas simulation taster material through https://www.e-neutrons.org

https://www.e-neutrons.org/
https://www.e-neutrons.org/

GA No 654000 SINE2020 Horizon2020

16

Table 6.2. Software architecture. The 1st column shows the row number.

 BornAgain Mantid McStas MuhRec SasView

1 Architecture
principle

Standard modern
C++ design

Separation of Data
and Algorithms.
Encapsulated “User
Code”. Reuse of
existing
components and
careful memory
management when
handling large
datasets

“Less is more”,
simplicity and
readability over
speed. Limit
number of external
dependencies

The architecture is
object oriented and
generalization
allows to separate
GUI from core code

The software is
divided into:
calculation module,
model function
library and GUI.
There is also a
minimizer module
that is separately
distributed

2 Modularisation Core library for
modelling sample
and instrument,
and computing the
expected detector
image. Python
wrapper and GUI on
top of it

The framework is
split into several
modules, as is the
user interface, and
both are separate
from the other

Layers: GUI tools,
“core” code
generator,
instrument file,
component codes,
simulation binaries

The project is
divided into core
code and GUI code
and each part is
subdivided into
dedicated libraries

Sasmodels is a
separate library
(separately hosted
on Github) that can
be interfaced with
the minimization
module directly.
Calculation and UI
modules are also
independent

3 Support plug-ins No plug-in
mechanism at C++
level, but the
Python wrapper
allows users to
implement custom
form factors

Plug-in architecture
that allows users to
extend the
framework in C++
and Python by
defining their own
algorithms, custom
user interfaces or
data objects,
among many other
things

Components are
our plug-ins.
Written as ISO C
code in a structured
format

Yes, the tools
support dynamic
loading of
precompiled share
library objects

Model functions
can be supplied as
plug-ins

4 Is scripting
supported

Python scripting Python scripting Scripting is
provided by the
tool layer

Scripting is
supported through
CLI arguments

Python scripting
and internal
scripting in plugin
editor

5 GUI framework Qt-based Qt-based Moving to Python-
Qt, Perl-Tk is our
legacy solution

 Qt-based Moving from wx-
Python to Qt

6 Can
accommodate
different data
formats

yes Yes, Mantid has a
list of formats that
it can write to or
read from, and this
is extensible a plug-
in mechanism

Yes: We provide our
own “McStas” ascii
format as well as
NeXus output

Currently, fits, tiff,
and nexus are
supported. Adding
new formats must
be done on the
code level

yes

7 Any data formats
specifically
supported for
interoperability
with other
software

Import and export
formats are
provided as users
request this

Yes, apart from one
internal format, all
of the other
formats we support
were created to
allow interaction
with other software

For ease of use with
Mantid, our NeXus
output can embed
an XML based IDF

The chosen formats
are the most
commonly used in
neutron imaging

Reads and writes
CanSAS 1D xml and
NXCansas HDF5.
Supports input and
output in basic
multi-column text
files.

8 API for external
software
provided

yes A simple C-style API
as well as much
more extensive C++
and Python APIs

No formal API
defined. The
instrument file
format is however
well described and
the cmdline
interfaces simple

The modularity of
the core libraries
make reusing of the
code possible, but is
not on specific
intention

No formal API yet
but documentation
efforts to
encourage reuse in
other python based
software or in
Jupyter notebooks
are under way.

GA No 654000 SINE2020 Horizon2020

17

Table 6.3. Software development. The 1st column shows the row number.

 BornAgain Mantid McStas MuhRec SasView

1 Code languages C++ and Python C++ and Python C, Python and Perl
(Perl being replaced
with Python)

C++ and Python C++ and Python

2 Compilers
supported

GCC, waiting for
Clang to fully work

MSVC, GCC and
Clang

“Anything ISO-c” Windows:
MSVC2015, MacOS:
XCode, Linux: g++.

OSX – clang, GCC.
Windows – msvc,
tinycc

3 Bindings SWIG binding C++ -
> Python

Boost.Python and
SIP

Perl-PGPLOT, Perl-
Tk, Python-Qt etc.

 No

4 ~% of
development
goes into
maintenance

10-20% 2 weeks after each
release is devoted
to code
maintenance. Many
other tasks can be
classified as
maintenance

10-30% 10% 20-30%

5 How frequently is
code re-engineer

Continually; almost
every new
functionality
requires some
refactoring

Extensive or risky
changes are
reserved for the
maintenance
periods

Often Rarely Not too often.
Rather bug fixing

6 Development
methodology

Agile Agile approach that
has been adjusted
for the distributed
nature of the
development team

Generally
informal/undefined.
On some ESS-
oriented tasks, the
methodology is
SCRUM

 Waterfall Agile development
with scrum and 2-3
week long sprints
implemented
internally at ESS

7 Version control Git Git Git SVN but transfer to
Git planned in 2017

Git

8 Build and
configuration
tools

CMake CMake CMake QMake Python packaging:
setuptools, distutils.
Make for building
documentation of
model function
library (sasmodels)

9 Packaging and
installers

Linux: source tgz.
MacOS: dmg.
Windows: installer
exe

We use CPack to
create our installers

CPack plus home-
grown
“metapackages”

Currently, the
packaging is done
by shell scripts

OSX – py2ap,
Windows –
pyinstaller

10 Issue/ticket
tracking system

Redmine, soon
moving to GitHub

GitHub GitHub GithHub Trac

11 Organized events Not yet We hold an annual
developer
workshop, where
external
contributors are
invited also

Every ~6-12 months
to work on common
tasks: “code
camps”. User
workshops most
years, 3 in 2016

No. The team
currently sit in the
same office

Code camps – once
or twice a year

12 Developer
documentation

wiki pages;
Doxygen comments
and other
comments in the
sources

In developer wiki In developer wiki Doxygen generated
API documentation.
Some few
framework module
guide documents

Little and rather
scattered

GA No 654000 SINE2020 Horizon2020

18

Table 6.4. Software quality. The 1st column shows the row number.

 BornAgain Mantid McStas MuhRec SasView

1 Automated
testing

For unit tests,
functional tests,
and integration
tests

For unit testing,
system testing and
documentation
testing. We are
moving many of our
UIs to an MVP
pattern to allow for
automated testing
of UI logic

Yes: but not in a
very strict way.
Every night an
integration test
runs – based on a
nightly build

Unit testing is used,
but with low
coverage

Unit tests to a
limited extent but
are planning to do
more

2 Continuous
integration

buildbot Jenkins, using
Leeroy to run build
for all of our Pull
requests

Currently a home-
grown script-
oriented system
running on OSX,
Debian, Windows.
We are moving to
Jenkins

First build scripts
are implemented
with Jenkins

Build servers for
Windows, OSX and
partialy for Linux.
Jenkins based

3 Acceptance
testing

no For each release we
allow for 2 weeks of
beta testing

Yes, but not in a
formalised sense

 No Yes but only before
releases

4 Static code
analysis tools

occasionally Several, Clang
format, cppcheck,
coverity, pylint,
clang tidy

On occasion yes,
formalised no

 No Pylint, Quantified
code

5 Dynamic
analysis tools

occasionally
Valgrind

Valgrind,
AddressSanitizer,
very sleepy

On occasion yes,
formalised no

Intel Profiler long
time ago

no

6 Do you do code
reviews

Under
consideration, as
we move to GutHub

All changes to the
code are reviewed
by a different
developer as part of
the testing process

Code reviews at
DTU between
developers there –
code, demo and
comments in a
weekly meeting

 No Through GitHub pull
requests

7 Follow coding
standards

Our own standards,
slowly evolving,
documented in
internal wiki

Standards for C++,
Python, units tests
and Mantid
algorithms and
fitting functions

Not in formalised
way

No, clean-up is
needed

The coding
standards are in
preparation and are
mostly collection of
PEP guidelines and
some SasView
specific rules

GA No 654000 SINE2020 Horizon2020

19

7 Appendix: In detail, results from software questionnaire
The questionnaire was completed for the following the data treatment software:

• BornAgain (http://bornagainproject.org)

• Mantid (http://www.mantidproject.org)

• McStas (http://mcstas.org)

• MuhRec (https://www.psi.ch/niag/muhrec)

• SasView (http://www.sasview.org)

It contains four sections:

E. Software setup (+ communication and support)
F. Software architecture
G. Software development and software quality
H. Any additional suggestions/comments

7.1 Reply to questionnaire: BornAgain
Answer to the questionnaire for the BornAgain software.

A. Software setup

A.1. Overview

What is the audience? What is the user base?

Users of GISAXS and GISANS instruments.

Who contributes? Who can contribute?

Currently 3 full-time developers in Scientific Computing Group at MLZ Garching. Some users
contribute valuable feedback. Everybody is welcome to contribute comments or patches.

Governance model used (e.g. does it include a management board)

None.

Number of developers working on the software

3, see above.

Is the development team in a single or multiple locations?

Single location so far. This may change next year with a co-developer being hired by University
of Erlangen.

License of your software

GPL v3 or higher

http://bornagainproject.org/
http://www.mantidproject.org/
http://mcstas.org/
https://www.psi.ch/niag/muhrec
http://www.sasview.org/

GA No 654000 SINE2020 Horizon2020

20

License(s) of third party libraries and software required to use the software. Are they
more restrictive?

GPL or less restrictive.

Is user support available? What means of support?

Yes, through mail (contact@bornagainproject.org) or Web contact form
(http://bornagainproject.org/contact)

Post-release communication with users (is there any form of stakeholder
engagement?)

?

Age of the project

started 2012, first release 2014

A.2. Requirements. How are software requirements gathered.

Who has a say in defining requirements?

Initial requirements defined by institute management in a proposal for the Helmholtz
Gemeinschaft. Additional requirements collected from user feedback and from in-house
research needs.

Do you collate requirements? How are all the requirements collated?

In our issue tracker.

Do you define priorities? Deadlines?

Priorities defined at start of each “sprint”. No hard deadlines.

B. Software architecture

B.1. Architecture

What are the general architectural principles?

Standard modern C++ design.

Modularization. Are there modules, independent libraries, separate layers?

Core library for modeling sample and instrument, and computing the expected detector
image. Python wrapper and GUI on top of it.

Does it support plug-ins (for example for fitting functions and minimizers)?

No plug-in mechanism at C++ level, but the Python wrapper allows users to implement custom

mailto:contact@bornagainproject.org

GA No 654000 SINE2020 Horizon2020

21

form factors.

Is the system extensible? Is scripting supported?

Yes, Python scripting.

B.2. User interfaces

Do you provide a graphical user interface (GUI)? On what platform is it supported?
What framework is it based on?

Yes. Multi-platform with active support for Linux, Mac, Windows. Qt-based.

Do you provide a command line interface (CLI)?

No explicit support, but comes automatically with Python wrapper.

B.3. Interoperability

Does the software interoperate with other software? How? For example, via system
calls, scripting, file I/O, web services, command line?

We use generic software like matplotlib. No interoperation with other domain-specific
software.

Is it possible to accommodate different data formats?

Yes.

Are any data formats supported specifically for interoperability with some third
party software?

Import and export formats are provided as users request.

Does it have an API that can be used from external software?

Yes.

Where do you see opportunities for and advantages of interoperability?

Right now not under consideration.

C. Software development and software quality

Development methodology used (Agile/Waterfall/other). Please provide comments.
If you use agile techniques for example, which ones

Agile, somehow.

GA No 654000 SINE2020 Horizon2020

22

Are version control tools used and how? What tool(s) (e.g. Git, Subversion, others)?

git.

Do you use any issue/ticket tracking system? What tools do you use, e.g. Trac, Jira,
Redmine, or GitHub issues? How do you use it?

Redmine, soon moving to GitHub

Do you use automated testing (e.g. unit, integration, unit, system, testing?

Yes, fully automatized unit tests, functional tests, and integration tests.

Do you use any form of acceptance testing (e.g. beta or alpha testing)?

No.

Do you have a release cycle?

A few releases per year, no fixed dates.

Do you do code reviews? What tools? How often and/or how much percentage of the
code?

Under consideration, as we move to GutHub.

Do you organize events such as code camps, hackathons, developer workshops, etc.?
Please describe them.

Not yet.

Is continuous integration used and how (build servers)? What tools are used, for
example Jenkins, Travis, etc.?

Yes. buildbot.

What build and configuration tools are used? For example CMake, pkg-config, make,
ninja, auto-tools, Python packaging systems, etc.

CMake.

What operating systems/platforms are supported? Are all of them fully supported?

Linux, MacOS, MS Windows all fully supported.

Packaging and installers. What packages do you distribute? How are they generated?
Do you use any specific tool such as CPack, custom package templates, etc.?

Linux: source tgz. MacOS: dmg. Windows: installer exe.

Compilers supported

gcc, waiting for Clang to fully work

GA No 654000 SINE2020 Horizon2020

23

Do you use static code analysis tools (e.g. Clang tools, cpplint, Eclipse, pylint, pep8)?

occasionally

Do you use dynamic analysis tools for debugging and/or profiling? Examples:
Valgrind, Clang tools such as AddressSanitizer.

occasionally Valgrind

User documentation. Do you provide for: installation, user manual, tutorials, user
workshops, other learning materials (videos, are specific guides, etc.)?

Installation instructions, tutorials and examples online. Physics manual (pdf) still incomplete.

What developer documentation is available?

Some wiki pages; Doxygen comments and other comments in the sources.

What programming languages are used and in what proportion?

C++. Automatically generated Python wrapper. Little additional Python. Large collection of
Python examples.

Are there bindings between programming languages?

Yes, SWIG binding C++ -> Python.

Do you follow and/or enforce any programming or coding standards (e.g. Google C++
Style Guide)?

Our own standards, slowly evolving, documented in internal wiki.

Do you put effort in code maintenance. What approximately percentage of
development goes into maintenance?

10-20%, perhaps.

How frequently do you reengineer or refactor code?

Continually; almost every new functionality requires some refactoring.

7.2 Reply to questionnaire: Mantid
Answer to the questionnaire for the Mantid software.

A. Software setup

A.1. Overview

What is the audience? What is the user base?

GA No 654000 SINE2020 Horizon2020

24

Anyone working with neutron scattering and muon data, including visiting scientists
as well as facility staff, with an emphasis on users who want to manipulate and
visualize such data.

Who contributes? Who can contribute?

The main development team is a collaboration between ISIS, STFC the SNS, ORNL, the
ESS and the ILL. Other people can contribute through the GitHub pull request
mechanism.

Governance model used (e.g. does it include a management board)

Mantid has a Project Management Board comprised of members of the contributing
facilities.

Number of developers working on the software

The development team total to over 20 FTE’s of developers, split across the 4 main
contributing facilities.

Is the development team in a single or multiple locations?

The development team is split across ISIS, the SNS, the ESS and ILL facilities.

License of your software

Mantid is released under GPL v3 or higher.

License(s) of third party libraries and software required to use the software. Are they
more restrictive?

None of the third party libraries used at present are more restrictive, in fact many are
less so. The third party libraries are licensed under a mixture of LGPL, GPL, Berkley
and custom open source licenses.

Is user support available? What means of support?

User support is available via our forum, help.mantidproject.org, and via email and
phone within any of the contributing facilities. Users or staff at one of the
contributing facilities will have preferential access to support resources above
external users.

Post-release communication with users (is there any form of stakeholder
engagement?)

We hold regular training sessions at ISIS and the SNS, annual Mantid scientific
steering committee is held at one of the facilities to gather future requirements and
directions.

Age of the project

9 year

GA No 654000 SINE2020 Horizon2020

25

A.2. Requirements. How are software requirements gathered.

Who has a say in defining requirements?

Requirements can come from many sources: The scientific steering committee,
Facility IT and scientific strategies, Instrument scientists, the development team and
suggestions from external users.

Do you collate requirements? How are all the requirements collated?

Requirements were initially collated in the User Requirements Document at the start
of the project, but are now stored as Github issues in the Mantid GitHub project.

Do you define priorities? Deadlines?

Priorities are defined by a simple low, medium, high scale together with assigning
issues to a particular planned release to fit in with any defined deadline.

B. Software architecture

B.1. Architecture

What are the general architectural principles?

The goal is “Consolidate the data reduction/analysis software for neutron scattering
without restricting the needs of the instrument scientists”. The design principles
included: Separation of Data and Algorithms, Encapsulated “User Code” in specific
places, use of well designed interfaces to allow generic use of components, Reuse of
existing components where possible and careful memory management when handling
large datasets.

Modularization. Are there modules, independent libraries, separate layers?

Yes The framework is split into several modules, as is the user interface, and both are
separate from the other. Below is a simplified package diagram of the framework.

GA No 654000 SINE2020 Horizon2020

26

Does it support plug-ins (for example for fitting functions and minimizers)?

The Mantid framework uses a plug in architecture that will allow users to extend the
framework by defining their own algorithms, custom user interfaces, data objects or
services, among many other things.

Is the system extensible? Is scripting supported?

Yes the system is extensible through both C++ and python. We hold training courses in
using python to extend the framework for both algorithms and fitting functions.

B.2. User interfaces

Do you provide a graphical user interface (GUI)? On what platform is it supported?
What framework is it based on?

Mantid supports several graphical user interfaces, some hosted within the generic
Mantidplot interfaces as well as other external tools. All of the tools hosted within
the Mantidplot interface are supported on Windows, Linux (Ubuntu and RHEL) and
Mac OsX. SNS and ISIS also have web interfaces to their auto reduction facilities that
use the Mantid Framework to process the data.

Algorithms

Kernel

DataObjects

Geometry

API

PythonAPI DataHandling
CurveFittingNexusMatlabAPI

GA No 654000 SINE2020 Horizon2020

27

Do you provide a command line interface (CLI)?

Mantid can be used without a user interface through Python. Otherwise Python
scripts can also be executed through the Mantidplot command line interface.

B.3. Interoperability

Does the software interoperate with other software? How? For example, via system
calls, scripting, file I/O, web services, command line?

Within an algorithm inside Mantid the developer has access to any other software
they wish to use, so this question is hard to answer. However at present we use all of
the listed approaches for interacting with third party software.

Is it possible to accommodate different data formats?

Mantid has an extensive list of formats that it can write to or read from, and this is
extensible suing our plug in algorithm system.

Are any data formats supported specifically for interoperability with some third
party software?

Yes, apart from one internal format, all of the other formats we support were created
to allow interaction with other software.

Does it have an API that can be used from external software?

Yes, Manti has a simple C style API as well as much more extensive C++ and Python
APIs.

Where do you see opportunities for and advantages of interoperability?

Mantid always looks for opportunities to interact with existing tools and software. If
an existing tool or package exists that is an accepted tool or standard for a task we
would look to interact with that tool rather than reimplement functionality.

C. Software development and software quality

Development methodology used (Agile/Waterfall/other). Please provide comments.
If you use agile techniques for example, which ones

Mantid follows an Agile approach that has been adjusted for the distributed nature of
the development team, the multiple facility wide base of key users. Key differences
are the long iterations and releases that fit with an acceptable release schedule for
our facilities, and the use of named developer – scientist pairings to provide the
product owner role for each technique.

Are version control tools used and how? What tool(s) (e.g. Git, Subversion, others)?

GA No 654000 SINE2020 Horizon2020

28

We use Git, hosted in Github.

Do you use any issue/ticket tracking system? What tools do you use, e.g. Trac, Jira,
Redmine, or GitHub issues? How do you use it?

We use Github Issues and pull requests. Previously we used Trac, but found the
performance at remote sites unacceptable.

Do you use automated testing (e.g. unit, integration, unit, system, testing?

We use automated testing extensively, for unit testing, system testing and
documentation testing. We are moving many of our UIs to an MVP pattern to allow
for automated testing of a lot of the UI logic.

Do you use any form of acceptance testing (e.g. beta or alpha testing)?

For each release we allow for 2 week of beta testing.

Do you have a release cycle?

Yes we have a release cycle that has been agreed with the contributing facilities
through the PMB. Mantid releases roughly every 4 months.

Do you do code reviews? What tools? How often and/or how much percentage of the
code?

All changes to the code are reviewed by a different developer as part of the testing
process before that development branch can be merged into the master code branch.
We have a gatekeeper group of senior developers that ensure this process happens.

Do you organize events such as code camps, hackathons, developer workshops, etc.?
Please describe them.

We hold an annual developer workshop, often alongside our annual scientific
steering committee meetings. The development team and external contributors are
invited.

Is continuous integration used and how (build servers)? What tools are used, for
example Jenkins, Travis, etc.?

We use Jenkins to provide continuous integration, using Leeroy to run build for all of
our Pull requests.

What build and configuration tools are used? For example CMake, pkg-config, make,
ninja, auto-tools, Python packaging systems, etc.

CMAKE, some developers use ninja underneath to improve build times.

What operating systems/platforms are supported? Are all of them fully supported?

http://www.mantidproject.org/Supported_Operating_Systems

Packaging and installers. What packages do you distribute? How are they generated?
Do you use any specific tool such as CPack, custom package templates, etc.?

GA No 654000 SINE2020 Horizon2020

29

We use CPack to create our installers.

Compilers supported

Internally we use MSVC, GCC and Clang

Do you use static code analysis tools (e.g. Clang tools, cpplint, Eclipse, pylint, pep8)?

Several, Clang format, cppcheck, coverity, pylint, clang tidy

Do you use dynamic analysis tools for debugging and/or profiling? Examples:
Valgrind, Clang tools such as AddressSanitizer.

Valgrind, AddressSanitizer, very sleepy

User documentation. Do you provide for: installation, user manual, tutorials, user
workshops, other learning materials (videos, are specific guides, etc.)?

Yes, we have extensive documentation http://docs.mantidproject.org that are also
installed with each release, we also have training materials that can be followed in
your own time or are presented as training courses twice per year.

What developer documentation is available?

http://www.mantidproject.org/Category:Development

What programming languages are used and in what proportion?

The majority of the code is in C++ and Python. Proportions are here
https://www.openhub.net/p/Mantid/analyses/latest/languages_summary

Are there bindings between programming languages?

Mantid has extensive Python Bindings

Do you follow and/or enforce any programming or coding standards (e.g. Google C++
Style Guide)?

Mantid follows it’s own coding standards
http://www.mantidproject.org/Coding_Standards

Do you put effort in code maintenance. What approximately percentage of
development goes into maintenance?

We have a minimum of 2 weeks after each release devoted to code maintenance, but
many other tasks could be classified as maintenance as well.

How frequently do you reengineer or refactor code?

Whenever it is necessary. Extensive or risky changes are reserved for the
maintenance periods.

GA No 654000 SINE2020 Horizon2020

30

7.3 Reply to questionnaire: McStas
Answer to the questionnaire for the McStas software.

A. Software setup

A.1. Overview

What is the audience? What is the user base?

Instrument designers, instrument scientists, experimentalists.

Who contributes? Who can contribute?

Contributions are typically by instrument scientists or university users. In principle anyone
with a GitHub account can contribute.

Governance model used (e.g. does it include a management board)

Very informal. We have the notion of a “core group” with a corresponding mailing list.

Number of developers working on the software

Currently ~ 5

Is the development team in a single or multiple locations?

Multiple locations

License of your software

GPL (2.0)

License(s) of third party libraries and software required to use the software. Are they
more restrictive?

GPL or other compatible license preferred. Some licenses are less restrictive.

Is user support available? What means of support?

Users can pose questions to the user mailing list and some send mails to the main
authors directly. More intensive local support is offered at some facilities by main
authors, but also from local “superusers”.

Post-release communication with users (is there any form of stakeholder
engagement?)

User mailinglist

Age of the project

18-19 years, founded in 1997 with first release in 1998

GA No 654000 SINE2020 Horizon2020

31

A.2. Requirements. How are software requirements gathered.

Who has a say in defining requirements?

The “core” team

Do you collate requirements? How are all the requirements collated?

We try to gather requirements, requests etc. as GitHub issues. The list is however often
incomplete.

Do you define priorities? Deadlines?

Priorities are defined pr. GitHub issue. Deadlines are generally very soft.

B. Software architecture

B.1. Architecture

What are the general architectural principles?

“Less is more”, simplicity and readability over speed. Limit number of external dependencies.

Modularization. Are there modules, independent libraries, separate layers?

Layers: GUI tools, “core” code generator, instrument file, component codes, simulation
binaries

Does it support plug-ins (for example for fitting functions and minimizers)?

Components are our plug-ins. Written as ISO C code in a structured format.

Is the system extensible? Is scripting supported?

Yes, for instance via our component. We recently initiated support for providing
external (c / fortran lib) dependencies. Scripting is provided by the tool layer
(simulation series, optimisations)

B.2. User interfaces

Do you provide a graphical user interface (GUI)? On what platform is it supported?
What framework is it based on?

Linux, Mac OS, Windows. We are actively moving to Python-Qt, Perl-Tk is our legacy solution.

Do you provide a command line interface (CLI)?

Yes. Generally experienced users end up running by use of favourite text editor and the
command line interface.

GA No 654000 SINE2020 Horizon2020

32

B.3. Interoperability

Does the software interoperate with other software? How? For example, via system
calls, scripting, file I/O, web services, command line?

Yes. Examples of all of the above exist.

Is it possible to accommodate different data formats?

Yes: We provide our own “McStas” ascii format as well as NeXus output.

Are any data formats supported specifically for interoperability with some third
party software?

For ease of use with Mantid, our NeXus output can embed an XML based IDF.

Does it have an API that can be used from external software?

No formal API defined. The instrument file format is however well described and the cmdline
interfaces simple.

Where do you see opportunities for and advantages of interoperability?

Recruitment route from other softwares, welcoming users from other areas. New areas of
use/application.

C. Software development and software quality

Development methodology used (Agile/Waterfall/other). Please provide comments.
If you use agile techniques for example, which ones

Generally informal/undefined. On some ESS-oriented tasks, the methodology is SCRUM.

Are version control tools used and how? What tool(s) (e.g. Git, Subversion, others)?

Yes. Full revision history exist. Currently Git (on GitHub), was on lab-driven SVN, CVS, RCS
before this. Also see https://www.openhub.net/p/mcstas. Repos shared with McXtrace (our
sister-code for X-rays.)

Do you use any issue/ticket tracking system? What tools do you use, e.g. Trac, Jira,
Redmine, or GitHub issues? How do you use it?

GitHub issues, was Trac earlier end originally Bugzilla. No formal policy on the use, but we try
to put new features, issues, user bugs on there. Shared with McXtrace

Do you use automated testing (e.g. unit, integration, unit, system, testing?

Yes, but not in a very strict way. Every night an integration test runs – based on a nightly build.
Output available at http://nightly.mccode.org - including latest results at
http://nightly.mccode.org/0_Current.html and graphical test output over time at

GA No 654000 SINE2020 Horizon2020

33

http://nightly.mccode.org/Datafiles/ . Shared with McXtrace

Do you use any form of acceptance testing (e.g. beta or alpha testing)?

Yes, but not in a formalised sense.

Do you have a release cycle?

Effectively yes - ~ 1 release / Y. But not formalised. We are trying to move to a more agile
scheme.

Do you do code reviews? What tools? How often and/or how much percentage of the
code?

Code reviews at DTU between developers there – code, demo and comments in a weekly
meeting. No software tools.

Do you organize events such as code camps, hackathons, developer workshops, etc.?
Please describe them.

Informally yes. We try to meet up every 6-12 months and work on common tasks. “code
camps”. User workshops most years, 3 in 2016.

Is continuous integration used and how (build servers)? What tools are used, for
example Jenkins, Travis, etc.?

Currently a home-grown script-oriented system running on OSX, Debian, Windows. We are
moving to Jenkins.

What build and configuration tools are used? For example CMake, pkg-config, make,
ninja, auto-tools, Python packaging systems, etc.

CMake is used (we came from auto-tools). For Python packages we are relying on
Anaconda

What operating systems/platforms are supported? Are all of them fully supported?

Linux (Debian-based preferred), Mac OS X (~3 most current releases, others available on
request), Windows (32 bit packages that work on 64 bit). Windows solution is in some areas
handicapped as it does not work exactly the same. All functionality is however available
everywhere.

Packaging and installers. What packages do you distribute? How are they generated?
Do you use any specific tool such as CPack, custom package templates, etc.?

For Debian: CPack plus home-grown “metapackages” (equivs-build). For RPM’s CPack
plus home-grown “metapackages” (rpmbuild). For OSX: CPack plus home-grown
“metapackages” (PackageMaker). For Windows: CPack (cross-compile with mingw on
Linux) plus home-grown “metapackage” (inno-setup running on Linux)

Compilers supported

“Anything ISO-c” (effectively people build with GNU, Intel C or clang/llvm-gcc)

GA No 654000 SINE2020 Horizon2020

34

Do you use static code analysis tools (e.g. Clang tools, cpplint, Eclipse, pylint, pep8)?

On occasion yes, formalised no. For code stats, see https://www.openhub.net/p/mcstas

Do you use dynamic analysis tools for debugging and/or profiling? Examples:
Valgrind, Clang tools such as AddressSanitizer.

On occasion yes, formalised no. For code stats, see https://www.openhub.net/p/mcstas

User documentation. Do you provide for: installation, user manual, tutorials, user
workshops, other learning materials (videos, are specific guides, etc.)?

Yes, all of the above as written material (PDF’s, html online docs, wikis). We are considering to
create webcasts for installation and introductory use.

What developer documentation is available?

A developer wiki is being populated at https://github.com/McStasMcXtrace/McCode/wiki

What programming languages are used and in what proportion?

Mostly c (51,2 KloC), TeX docs (18,5 KloC), tools in Perl (13,6 KloC) and Python (11,2 KloC) plus
various graphical backends. For a full, updated statistics, see
https://www.openhub.net/p/mcstas/analyses/latest/languages_summary

Are there bindings between programming languages?

Yes, mostly on the tool/graphics side. (perl-PGPLOT, perl-Tk, Python-Qt etc.)

Do you follow and/or enforce any programming or coding standards (e.g. Google C++
Style Guide)?

Not in formalised way.

Do you put effort in code maintenance. What approximately percentage of
development goes into maintenance?

Yes, clearly. Difficult to answer, 10-30%.

How frequently do you reengineer or refactor code?

Often, e.g. a bit on the component and tools for each release. Our tool layer is being
modernised, move from perl->python, so we are investing a big effort in thinking of better
solutions there.

D. Suggestions. Please feel free to add more points and questions as well as your
answers to them.

Q: Do you use 3rd party online code-analysis tools like OpenHUB?

A: Yes, see https://www.openhub.net/p/mcstas. Other softwares from SINE are also
listed there, e.g. Mantid: https://www.openhub.net/p/Mantid

https://www.openhub.net/p/mcstas
https://www.openhub.net/p/Mantid

GA No 654000 SINE2020 Horizon2020

35

7.4 Reply to questionnaire: MuhRec
Answer to the questionnaire for the MuhRec software.

A. Software setup

A.1. Overview

What is the audience? What is the user base?

The main audience is the neutron imaging user community, but the nature of the algorithms
makes it possible to use also with X-ray CT data.

Who contributes? Who can contribute?

Currently: Anders Kaestner (founder), Chiara Carminati. After open source release it will be
possible for others to contribute.

Governance model used (e.g. does it include a management board)

There is an advisory committee set up in the frame of SINE2020. Prior to that, the
development was a personal initiative.

Number of developers working on the software

2

Is the development team in a single or multiple locations?

Single

License of your software

Currently freeware, but I am about to most likely release is as LGPLv3. Would be happy to
hear your comments and recommendations.

License(s) of third party libraries and software required to use the software. Are they
more restrictive?

BSD-like, LGPLv3, MIT, GPL

Is user support available? What means of support?

Limited support by direct email communication.

Post-release communication with users (is there any form of stakeholder
engagement?)

Currently none.

Age of the project

8 years

GA No 654000 SINE2020 Horizon2020

36

A.2. Requirements. How are software requirements gathered.

Who has a say in defining requirements?

The advisory board, user requests.

Do you collate requirements? How are all the requirements collated?

Before SINE2020, the project was developed based on direct (personal AK) needs. No
requirements where written until now. We are working on it with the advisory board.

Do you define priorities? Deadlines?

Short term priorities are to solve problems. Longer term priorities currently only defined in
the SINE2020 proposal. The advisory board are about to define priorities and deadline.

B.2. User interfaces

Do you provide a graphical user interface (GUI)? On what platform is it supported?
What framework is it based on?

The tools have GUI using Qt 5.6+. Supported on

Do you provide a command line interface (CLI)?

Yes. By loading predefined parameter file that can be modified by CLI arguments.

B.4. Interoperability

Does the software interoperate with other software? How? For example, via system
calls, scripting, file I/O, web services, command line?

We have tested running the tools with a python script using system calls with the CLI.

Is it possible to accommodate different data formats?

Currently, fits, tiff, and nexus are supported. Adding new formats must be done on the
code level.

Are any data formats supported specifically for interoperability with some third
party software?

The chosen formats are the most commonly used in neutron imaging.

Does it have an API that can be used from external software?

The modularity of the core libraries make reusing of the code possible, but is not on

GA No 654000 SINE2020 Horizon2020

37

specific intention.

Where do you see opportunities for and advantages of interoperability?

In a future version of the nGItool there can be a coupling to sasview

C. How is the software developed and how is software quality ensured

Development methodology used (Agile/Waterfall/other). Please provide comments.
If you use agile techniques for example, which ones

Waterfall

Are version control tools used and how? What tool(s) (e.g. Git, Subversion, others)?

Currently, we use subversion but the transfer to Git is planned in 2017

Do you use any issue/ticket tracking system? What tools do you use, e.g. Trac, Jira,
Redmine, or GitHub issues? How do you use it?

Github issues will be used. MuhRec already redirects to GitHub for bug reporting.

Do you use automated testing (e.g. unit, integration, unit, system, testing?

Unit testing is used, but with low coverage.

Do you use any form of acceptance testing (e.g. beta or alpha testing)?

No.

Do you have a release cycle?

About once a year.

Do you do code reviews? What tools? How often and/or how much percentage of the
code?

No

Do you organize events such as code camps, hackathons, developer workshops, etc.?
Please describe them.

No, The team currently sit in the same office…

Is continuous integration used and how (build servers)? What tools are used, for
example Jenkins, Travis, etc.?

First build scripts are implemented with Jenkins. Will be automatized once we
transfer to GitHub.

What build and configuration tools are used? For example CMake, pkg-config, make,
ninja, auto-tools, Python packaging systems, etc.

GA No 654000 SINE2020 Horizon2020

38

QMake is used

What operating systems/platforms are supported? Are all of them fully supported?

Windows, MacOS, and Ubuntu are fully supported.

Packaging and installers. What packages do you distribute? How are they generated?
Do you use any specific tool such as CPack, custom package templates, etc.?

Currently, the packaging is done by shell scripts.

Compilers supported

Windows: MSVC2015, MacOS: XCode, Linux: g++. Recommended development IDE:
QtCreator

Do you use static code analysis tools (e.g. Clang tools, cpplint, Eclipse, pylint, pep8)?

No

Do you use dynamic analysis tools for debugging and/or profiling? Examples:
Valgrind, Clang tools such as AddressSanitizer.

Intel Profiler long time ago.

User documentation. Do you provide for: installation, user manual, tutorials, user
workshops, other learning materials (videos, are specific guides, etc.)?

Muhrec has a user manual. No learning material is provided.

What developer documentation is available?

Doxygen generated API documentation. Some few framework module guide
documents.

What programming languages are used and in what proportion?

C++ (C++11) 99.9%, Python 0.1%

Are there bindings between programming languages?

None

Do you follow and/or enforce any programming or coding standards (e.g. Google C++
Style Guide)?

No, clean-up is needed

Do you put effort in code maintenance. What approximately percentage of
development goes into maintenance?

10%

How frequently do you reengineer or refactor code?

GA No 654000 SINE2020 Horizon2020

39

Rarely.

7.5 Reply to questionnaire: SasView
Answer to the questionnaire for the SasView software.

A. Software setup

A.1. Overview

What is the audience? What is the user base?

Instrument scientists and scientists using SAS technique. The registered user
community is about 50 people.

Who contributes? Who can contribute?

The contributors’ team hails from 6 neutron facilities (NIST, SNS, ANISTO, ESS, PSI,
ISIS). Anyone can contribute to the code by prior contacting management team.

Governance model used (e.g. does it include a management board)

The management team consists of 4 people.

Number of developers working on the software

2 full time, approx. 20 occasionally (mostly during code camps)

Is the development team in a single or multiple locations?

It is spread into 6 different institutions around the world.

License of your software

BSD

License(s) of third party libraries and software required to use the software. Are they
more restrictive?

No

Is user support available? What means of support?

Yes, through the user mailing list and tutorials.

Post-release communication with users (is there any form of stakeholder
engagement?)

No, free to use and redistribute

Age of the project

GA No 654000 SINE2020 Horizon2020

40

Started in 2006 as a part of NIH grant but in current form (as community driven
project) for last 4 years

A.2. Requirements. How are software requirements gathered.

Who has a say in defining requirements?

The final say has a management team but many decisions are made during biweekly
conference calls

Do you collate requirements? How are all the requirements collated?

User requirements are collated through mailing lists while other requirements are
gathered on Trac issue system.

Do you define priorities? Deadlines?

The SasView road map defines long-term deadlines and priorities. Short-term
deadlines are typically announced during biweekly conference calls.

B. Software architecture

B.1. Architecture

What are the general architectural principles?

The software is divided into: core module (SasCalc), model function library
(sasmodels) and GUI (sasgui). There is also a minimizer module (bumps) that is
separately distributed (independent of SasView).

Modularization. Are there modules, independent libraries, separate layers?

Sasmodels is a separate library (separtaly hosted on GitHub) that can be also
interfaced by minimization module (bumps) directly.

Does it support plug-ins (for example for fitting functions and minimizers)?

Model functions can be supplied as plug-ins.

Is the system extensible? Is scripting supported?

Command line interface is work in progress but to some extent scripting it is already
available

B.2. User interfaces

Do you provide a graphical user interface (GUI)? On what platform is it supported?

GA No 654000 SINE2020 Horizon2020

41

What framework is it based on?

Yes, there is a GUI. Currently it is based on wx-python but there are efforts being
made to rewrite it in Qt.

Do you provide a command line interface (CLI)?

Yes, but to limited extent at the moment

B.3. Interoperability

Does the software interoperate with other software? How? For example, via system
calls, scripting, file I/O, web services, command line?

The minimizer (bumps) is called from SasView by internal scripting mechanism.
There is also a minimizer GUI triggered from SasView GUI.

Is it possible to accommodate different data formats?

In principle yes.

Are any data formats supported specifically for interoperability with some third
party software?

 Reads and writes CanSAS 1D xml and NXCansas HDF5 which provide enhanced
metadata. Supports input and output in basic multi-column text files

Does it have an API that can be used from external software?

This is work in progress

Where do you see opportunities for and advantages of interoperability?

Minimizers, Model function library

C. Software development and software quality

Development methodology used (Agile/Waterfall/other). Please provide comments.
If you use agile techniques for example, which ones

Code sprints and kanban implemented internally at ESS (affects 3 developers). Other
developers contribute mostly during code camps.

Are version control tools used and how? What tool(s) (e.g. Git, Subversion, others)?

GIT

Do you use any issue/ticket tracking system? What tools do you use, e.g. Trac, Jira,
Redmine, or GitHub issues? How do you use it?

GA No 654000 SINE2020 Horizon2020

42

Trac for bug reporting and future developments

Do you use automated testing (e.g. unit, integration, unit, system, testing?

Unit tests to limited extend but planed to be more in the future.

Do you use any form of acceptance testing (e.g. beta or alpha testing)?

No

Do you have a release cycle?

Each code camp should end-up with a release. So far releases has been approximately
once a year.

Do you do code reviews? What tools? How often and/or how much percentage of the
code?

Internally at ESS through pull requests. This is however no effective in entire SasView
community.

Do you organize events such as code camps, hackathons, developer workshops, etc.?
Please describe them.

Code camps – once or twice a year

Is continuous integration used and how (build servers)? What tools are used, for
example Jenkins, Travis, etc.?

Build servers for Windows and OSX. Jenkins based.

What build and configuration tools are used? For example CMake, pkg-config, make,
ninja, auto-tools, Python packaging systems, etc.

Python packaging: setuptools, distutils. Make for building documentation of model
function library (sasmodels).

What operating systems/platforms are supported? Are all of them fully supported?

Windows 7 and OSX 10.10. The future plan includes current version and one
previous.

Packaging and installers. What packages do you distribute? How are they generated?
Do you use any specific tool such as CPack, custom package templates, etc.?

OSX – py2ap, Windows – pyinstaller

Compilers supported

OSX – clang, gcc. Windows – msvc, tinycc

Do you use static code analysis tools (e.g. Clang tools, cpplint, Eclipse, pylint, pep8)?

pylint, QuantifiedCode

GA No 654000 SINE2020 Horizon2020

43

Do you use dynamic analysis tools for debugging and/or profiling? Examples:
Valgrind, Clang tools such as AddressSanitizer.

no

User documentation. Do you provide for: installation, user manual, tutorials, user
workshops, other learning materials (videos, are specific guides, etc.)?

Web-based and built-in documentation and a standalone tutorial

What developer documentation is available?

Little and rather scattered

What programming languages are used and in what proportion?

Python/C++ 70%/30%

Are there bindings between programming languages?

No

Do you follow and/or enforce any programming or coding standards (e.g. Google C++
Style Guide)?

The coding standards are in preparation and are mostly collection of PEP guidelines
and some SasView specific routines

Do you put effort in code maintenance. What approximately percentage of
development goes into maintenance?

Entire code should be maintained

How frequently do you reengineer or refactor code?

Not too often. Primarly because of bug fixing

	1 Introduction
	1.1 What are guidelines and standards
	1.2 Related publications

	2 Guidelines based on identifying commonality from a software questionnaire
	2.1 Software setup, communication & support
	2.2 Software architecture
	2.3 Software development
	2.4 Software quality
	2.5 In summary guidelines based on questionnaire
	2.6 How do guidelines improve software interoperability
	2.7 Additional guidelines suggested at SINE2020 workshop April 2017

	3 Guidelines for documenting data loaders
	4 Benchmarking tool for fit minimizers
	5 Acknowledgements
	6 Tables summarising results from the questionnaire
	7 Appendix: In detail, results from software questionnaire
	7.1 Reply to questionnaire: BornAgain
	7.2 Reply to questionnaire: Mantid
	7.3 Reply to questionnaire: McStas
	7.4 Reply to questionnaire: MuhRec
	7.5 Reply to questionnaire: SasView

