Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout

The individual cathode charge division readout SINE2020 WP9.3

J.C. Buffet, J.F. Clergeau, S. Cuccaro, B. Guerard, J. Pentenero, and D. Roulier

ILL

May, 16th 2018

SINE2020 WP 9.3

Needs

- 2D detector for reflectometry
- 1 mm×1 mm resolution
- high counting rate

Microstrips

- Capable of high counting rate 10 kHz/"pixel" expected
- ► short anode-anode and anode-cathode distance (≠ MWPC)
- parallel reading

charge division along the strips (Y)

Novelty : reading of cathodes

tunable resistance for charge division, shorter RC

MSGC64 prototype

- 64 anodes and cathodes 1 mm periodicity in *X* 64 mm×64 mm detection area
- comb design on cathodes
- Charge division on cathodes $R = 1.25 \text{ k}\Omega$
- Schott S8900 substrate
- plates made by IMT (Greifensee, CH)

Connectics

Cathodes

- 0.8 mm pads
- flexible PCB with spring probes (00.53 mm)
- ► every 2 mm on each side of the connector → every 1 mm on the MSGC.

Anodes

- ► 0.5 mm pads, 150 µm away from cathode strips → different connectics needed
- wedge bonding $033 \,\mu\text{m}$ diameter Al wire
- 4 spring probes to supply HV
- tested @PTA Minatec (Grenoble), performed @STFC Interconnect

Setup

- up to 5 bar pressure vessel
- possibility to mount a larger plate (~ 200 mm×200 mm)
- (2 × 4) 37 pins
 HV feedthroughs
- drift electrode on the entrance window

Setup

- 3 bar CF₄ (up to 1 mm resolution), 2 bar ³He
- Drift from -1000 V to -1600 V
- cathodes to ground, individual readout
- charge division amplifiers \sim 2 V/pC, 1 μ s

CAEN V1740 electronics with ILL DPP Firmware and readout software, under implementation on all the ILL instruments equiped with Position Sensitive Proportional Counter Tubes.

• HV +1300 V \rightarrow +1550 V on anodes (gain 40-200), global readout (amplifier \sim 3 V/pC, 0.8 $\mu s)$

PSND2018 D. Roulier ILL Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout May, 16th 2018 6/16

Charge Division Calibration

Individual channel calibration with a mask

- Piecewise linear function between slit positions
- Compensation of the resistance differences of the strips
- Compensation of bad probes contacts
- Compensation of gain differences of individual amplifiers

Data treatment

 $\begin{array}{l} \mbox{Microstrip} \neq \mbox{Tubes (multiplicity!)} \Rightarrow \mbox{Processing data off-line} \\ (\Rightarrow \mbox{possibility to compare differents algorithms with the same data set)} \end{array}$

A clustered event is defined as a group of simultaneous active contiguous channels

- X (perpendicular to the strips): CoG with the total charge on each strip → Left-Right overbinning
- Y (parallel to the strips): the charge division algorithm is applied to Q_{up} and Q_{down}

Uniformity

With AmBe source

No drift compensation DRIFT DRIFT HV DRIFT HV DRIFT V HAUT CADRE CADRE BAS GND GND 015193 s8900_8_RCm_1550_d1000/9000/100 015187 s8900_8_RCm_1550_d1000/900/p100 9.0 6.0 man

With drift compensation

ILL Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout May, 16th 2018 9/16 PSND2018 D. Roulier

Measurements with neutron beam

PSND2018 D. Roulier ILL Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout May, 16th 2018 10/16

Resolution with charge division

Scanning the Y direction with a horizontally collimated beam (0.5 mm slit)

- Non-linearity $\pm 100 \, \mu {
 m m}$
- Resolution better than 1.2 mm in the inner area of the detector
- Resolution still good at lower gain (1.6 mm at gain \sim 40)

Resolution with CoG

Scanning the X direction every 0.125 mm with a vertically collimated beam

- 0.5 mm re-binning
- Non-linearity \pm 30 μ m
- 1 mm resolution (≥ 76% of events in 2 bins ⇔ FWHM)

PSND2018 D. Roulier ILL Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout May, 16th 2018 12/16

Countrate capability

Irradiation on a $10 \times 20 \text{ mm}^2 \text{ B}_4\text{C}$ hole on the detector window, w/o several layers of attenuator (plexiglas)

Geometrical effects

1550 V, drift -1500 V

- At high flux, charges concentrated in the middle of the slit (orientation-independant)
- Appears at low flux
- Falsifies resolution measurements

Conclusion and prospects

- Good resolution results (up to 1 mm×1.2 mm) : charge division on cathode works!
- Unexpected countrate issue at high gain : strong space charge effect (substrate or gas ?)
 → To be determined
 - \Rightarrow To be determined
- Plans to make a larger plate (200 mm×200 mm) with 128 strips are on hold

Thank you

Expected anodes and cathodes resistances

- length / = 7.65 cm
- thickness t = 200 nm
- anodes width $w_a = 10 \ \mu m$
- cathodes width $w_c = 50 \ \mu m$
- $R_s = 2.6 \ \Omega/\Box$

Anodes $R_a = R_s \frac{l}{w_a} = 20 \text{ k}\Omega$ Cathodes (approx. no comb pattern) $R_c / / R_c = \frac{1}{2} R_s \frac{l}{w_c} = 2 \text{ k}\Omega$

PSND2018 D. Roulier ILL Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout May, 16th 2018 17/16

Electronics for charge division

- CAEN V1740 digitizer boards (64 channels=32 tubes/strips) with ILL DPP Firmware and readout software
- amplifiers with 4th order Gaussian filter function, baseline correction circuit
- under implementation on all the ILL instruments equiped with Position Sensitive Proportional Counter Tubes.
- input is 12 bits unsigned data, the output is 16 bits unsigned data.
- real-time : s_n(t)=ch_{up}(t)+ch_{down}(t)
- real-time : if s_n(t)>threshold, find max and save event (s_n, ch_{up} and 48 bit timestamp)

Resolution CoG

Non-gaussian distribution, with peaks depending on the multiplicity of events (odd/even)

PSND2018 D. Roulier ILL Development of a ³He based microstrip gas chamber (MSGC) with a novel 2D readout May, 16th 2018 20/16

Geometrical effects

1550 V, drift -1500 V

Geometrical effects

- At high flux, charges concentrated in the middle of the slit.
- Appears at low flux
- Huge effect
- Falsifies resolution measurements

