

High rate wavelength shifting fibre coupled ZnS:Ag/⁶LiF neutron detectors at ISIS

G. Jeff SYKORA, Erik M. SCHOONEVELD, Nigel J. RHODES and Nick FERGUSON

¹Science and Technology Facilities Council, ISIS facility, Rutherford Appleton Laboratory, Harwell Oxford, United Kingdom

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654000.

Motivation Reflectometers

Motivation Reflectometers

High rate reflectometers Need 10's kcps locally Typical ZnS:Ag/⁶LiF detectors are too slow ... but also reliable, simple and relatively inexpensive

High position resolution Cover more range in Q Maintain cost-effectiveness Extend into 2D (GISANS)

State of the art WSF detectors for Reflectometry on ISIS

- ➢ ⁶LiF/ZnS:Ag
- Linear PSD
- 380 mm linear coverage
 - Continuous scintillator
- 16 ch MAPMT readout 192 PMT channels
- Functioning well on OffSpec

- ± 7% non-uniformity
- 16 kcps local peak rate (per PMT)
 - 60mm² area for narrow beam

Combatting rates

Segmented high aspect ratio 2D (SHARD)

- More PMT channels
- Maintains simplicity

Fundamental

- Scintillators
- Signal processing
 - Compromises?

SHARD concept

Solution for global rate limitations:

- High aspect ratio 2D
- Limits number of possible fibre combinations
- Optically isolated rows for coarse pixilation
- 2.5mm bend radius fibres for close packing

SHARD Configuration

- 1 mm fibres 16 mm wide
- Individual segments
 - Optically divided
 - Supports
 - > 3D printed
 - Strips of scintillator front and back
- Single 64 ch FP-PMT per segment

SHARD Configuration

- 1 mm fibres 16 mm wide
 Individual segments
 Optically divided
 Supports
 3D printed
 Strips of scintillator front
 - Strips of scintillator front and back
- Single 64 ch FP-PMT per segment

Neutron beam

SHARD Testing

> OffSpec reflectometer

- Efficiency
- Rate capability
- Ghosting

Detector in direct beam Measure efficiency Global and local peak rates

OffSpec Results

Efficiency What you expect

Top scintillator thickness?

- ≻ 450 µm
- ➢ 225 µm

Absorption efficiency

Efficiency Relative to known monitor

450 µm thick scintillator divided by monitor counts

~60% efficient at 1.8Å ~80% efficient at 6.0Å

Efficiency

Thin scintillator on front face or standard thickness?

- Flat geometry
- Which wavelengths are more important?

Efficiency

Thin scintillator on front face or standard thickness?

- Flat geometry
- Which wavelengths are more important?

- 0.25mm front scintillator + 0.45 back scintillator is ~90% efficient at 9 Å
- 0.45 front scintillator efficiency drops to 45% at 9 Å

SHARD

Detector in direct beam

Increase incident slits

Integrated over ToF

Detector in direct beam

Increase incident slits 1mm / 0.2mm

Detector in direct beam

Increase incident slits 8mm / 1.6mm

- Local instantaneous peak rates
 - Single pixel peak rates linear until 16 kcps
 - Consistent with other ZnS:Ag/⁶LiF detectors

- "Local" (within beam area) instantaneous peak rates
 Linear until ~160 kcps
- Global (across detector) instantaneous peak rates
 Limited to 320 kcps

Local Rate limit = $n_{seg} \times n_{PMTs} \times 16 \ kcps$ Global Rate limit = $n_{seg} \times 80 \ kcps$

SHARD Testing

OffSpec reflectometer IF

- Efficiency
- Rate capability
- Ghosting

Ghosting

Ghosting

Ir-600 reflectivity

Rates not extreme ~9 kcps on a PMT in direct beam

Ghost reduction

Vary threshold based on number of fibres measuring light

Example of 0.5mm OffSpec detector on CRISP

Summed 1, 2 and 3 fibre coincidences Different thresholds: 1 fibre = 650 mV 2 fibre = 200 mV 3 fibre = 150 mV Ghosting eliminated with 15% loss of counts in peaks

SHARD Summary

- A segmented approach provides a simple, cost effective solution to increasing rate capability for reflectometers
- Segments can be made in a variety of widths
- Efficiency can be "tailored"
- Some ghosting exists but so do methods of eliminating ghosts.
- Now applying this solution for a detector on INTER

SHARD Summary

- A segmented approach provides a simple, cost effective solution to increasing rate capability for reflectometers
- Segments can be made in a variety of widths
- Efficiency can be "tailored"
- Some ghosting exists but so do methods of eliminating ghosts.
- Now applying this solution for a detector on INTER
- Still need (cost-effective) high resolution

Positioning

Nick Ferguson – student working on this project

Current method – pick brightest fibre

Positioning

Current method – pick brightest fibre

Positioning

Use simple centre of mass calculation Centre of mass in 7 fibres centralised on fibre with maximum photon density

Testing

≻ CRISP reflectometer on ISIS ≻ Scan detector across 100 µm beam ≻ Detector has 1mm fibre pitch

Results

 $\pm 50 \,\mu$ m accuracy of beam center

 $500 \ \mu m FWHM$

Motivation Reflectometers

Requirements

- High instantaneous count rates
- High position resolution (2D)

Positioning 2 Dimensions

Use simple centre of mass calculation Centre of mass in 7 fibres centralised on fibre with maximum photon density

$$x_{interp} = \sum_{i=0}^{n} \frac{a_i x_i}{a_i}$$

Prototyping Testing

0.5 mm fibres 3 mm pitch 1.5 mm pitch

B₄C and Cd test masks

Histogram of counts Counts - 24100 16 -14 -- 19280 12 y position (mm) 10 - 14460 8 · - 9640 6 4 -- 4820 2 -0 Т 13 15 16 2 $\overline{}$ $\overline{}$ x position (mm)

2D interpolation Results

3 mm pitch standard

Science & Technology Facilities Council

2D interpolation Results

3 mm pitch standard

3 mm pitch Interpolated to 0.75mm

2D interpolation Results

3 mm pitch standard

2D interpolation Results

3 mm pitch standard

3 mm pitch Interpolated to 0.75mm

Interpolation vs finer pitch

3mm pitch, 0.75mm binning

1.5mm pitch, 1.5mm binning

0.5 mm fibres 1.5 mm pitch

Old detector 3mm x 3mm

SXD Example Data 9,10-Diphenylanthracene WSF detector

1.5mm x 1.5mm

Summary

- Interpolation improved FWHM by a factor of 2.
- Positioning improved by over a factor of 4.
- Progress on detectors for reflectometry is directly applicable to others and vice versa.
- We now have viable solutions for the INTER reflectometer AND single crystal diffraction.
- Can we combine them for high rates and high 2D resolution?

Questions?

Ghosting

Ghosting is an issue with this coding scheme N.B. This was expected

> Example:

	Endinpre.		Fibre no.	PMT 1	PMT 2	
			1	1	9	
			2	1	10	
			3	2	10	
			4	2	11	
\sim	Chaste soused by		5	2	17	
	Gnosts caused by	2	7	4	12	
			8	4	13	
	Afteralow		9	5	13	
	J		10	5	14	
	Codina		11	6	14	Direct beam
	/ County		12	6	15	
	> Cross-talk		1.4	7	15	
			14	8	16	
			16	8	9	
			17	3	9	
			18	3	10	
			19	4	10	
			20	4	11	
			21	5	11	
			22	5	12	
			23	6	13	
			25	7	13	Location of abosts
			26	7	14	Location of ghosts
			27	8	14	-
			28	28 8 15		
			29	1	15	
			30	1	16	
			31	2	0	
			52	2	9	

Ghosting is an issue with this coding scheme

N.B. This was expected

> Example:

Ghosts caused by :

Science & Technology Facilities Council

SIS

- > Afterglow
- Coding
- Cross-talk

- Methods to reduce ghosting
 - Reduce number of fibre codes used
 - Vary threshold based on number of fibres measuring light
 - Insert reflectors between fibres

Location of ghosts