PAUL SCHERRER INSTITUT

A. Stoykov, J.-B. Mosset, M. Hildebrandt :: NUM :: Paul Scherrer Institut

Count rate capability of a ZnS:⁶LiF based scintillation neutron detector read out with a SiPM

International Workshop on Position Sensitive Neutron Detectors 2018 Jülich, May 15th – 17th 2018

- generally accepted that count rate capability of ZnS:⁶LiF neutron detectors is strongly limited due to the long afterglow of the scintillator
- solution of this problem was expected in the direction of faster scintillators, like e.g. ZnO:⁶LiF → triggered by J. Sykora *et al.* (2016, 2018)

- generally accepted that count rate capability of ZnS:⁶LiF neutron detectors is strongly limited due to the long afterglow of the scintillator
- solution of this problem was expected in the direction of faster scintillators, like e.g. ZnO:⁶LiF \rightarrow triggered by J. Sykora *et al.* (2016, 2018)
- own measurements confirm decay curves and rest light integrals of ZnS and ZnO
 - \rightarrow in case of short integration or coincidence times: $I(>t)_{ZnS} \approx I(>t)_{ZnO}$
 - higher light yield of ZnS is advantageous for signal processing \rightarrow

Hildebrandt, PSI

ZnS:⁶LiF Neutron Scintillation Detector

- pixelated approach
- ZnS(Ag):⁶LiF (ND2:1) scintillation screen (Scintacor)
 - 0.45 mm thickness and machined grooves
- WLS fibres Y11(400)M (Kuraray)
 - Ø = 0.25 mm
 - embedded in grooves of scintillator
- Eljen EJ500 optical epoxy
- detection unit
 - front side: fibers polished and mirrored
 - rear end: 13 fibres bundled, polished and coupled to individual SiPM
- $\rightarrow~$ high neutron absorption efficiency
- \rightarrow efficient, high and uniform light collection

Photo Sensor and Signal Processing System

- SiPM used as photo sensor (Hamamatsu MPPC S13360-1350PE)
 - \rightarrow single photon counting capability
- each channel equipped with
 - individual SiPM
 - individual (FPGA-based) signal processing
 - \rightarrow individual channel readout, no coding
 - \rightarrow high count rate capability

Discr SA input discriminator (dead time $\Delta_0 = 10$ ns) **G-Amp** Gaussian shaping amplifier (dead time Δ_F) **Discr SDi** leading-edge discriminator (trigger efficiency *E*)

Event-Gen non-retriggerable mono-flop (dead time Δ_2)

n rate of detected events

sh-time = 0.25 μs b-time = 0.5 μs n ≈ 10 Hz

Performance (1D Detector)

- achieved detector performance
 - 1D, gapless, individual pixel readout
 - individual long pixels (2.5 mm, 200 mm)

٥	detection efficiency, 1(8)Å	65 (80) %
	absorption probability, 1(8)Å	80 (100) %
	trigger efficiency	80 %
	background count rate	≤ 10 ⁻³ Hz
٥	gamma-sensitivity (⁶⁰ Co)	≤ 10 ⁻⁷
	multi-count ratio	≤ 10 ⁻³
	time resolution	< 1 µs
٥	count rate capability	up to 10 kHz/ch
٥	sustainable SiPM dark count rate	< 6 MHz
	SiPM lifetime	> 10 years

Stoykov, Mosset, Hildebrandt, IEEE TNS 63(4), 2016, 2271-2277

→ test of count rate capability (not yet constrained) with optimized electronics settings

Measurement Setup

• POLDI beam line at Neutron Spallation Source SINQ (PSI)

n_{abs} neutron absorption rate

n rate of detected events

- **Discr SA** input discriminator (dead time $\Delta_0 = 3$ ns, instead of 10 ns)
- **G-Amp** Gaussian shaping amplifier (dead time $\Delta_{\rm F}$)
- **Discr SDi** leading-edge discriminator (trigger efficiency *E*)
- **Event-Gen** non-retriggerable mono-flop (dead time Δ_2)
 - **n**_{abs} neutron absorption rate
 - **n** rate of detected events

- **Discr SA** input discriminator (dead time $\Delta_0 = 3$ ns, instead of 10 ns)
- **G-Amp** Gaussian shaping amplifier (dead time $\Delta_{\rm F}$)
- **Discr SDi** leading-edge discriminator (trigger efficiency *E*)

Event-Gen non-retriggerable mono-flop (dead time Δ_2)

- **n**_{abs} neutron absorption rate
- **n** rate of detected events

- **Discr SA** input discriminator (dead time $\Delta_0 = 3$ ns, instead of 10 ns)
- **G-Amp** Gaussian shaping amplifier (dead time $\Delta_{\rm F}$)
- **Discr SDi** leading-edge discriminator (trigger efficiency *E*)

Event-Gen non-retriggerable mono-flop (dead time ⁴₂)

- **n**_{abs} neutron absorption rate
- **n** rate of detected events

$$\Delta_1 = \Delta_0 + \Delta_F$$

 n_{abs} neutron absorption rate, $n_{abs} = k n_{ref}$

- *n* rate of detected neutron
- n_{max} max. rate at 10% event losses

 n_{ref} rate in fast reference detector corrected for dead time

Hildebrandt , PSI

 n_{abs} neutron absorption rate, $n_{abs} = k n_{ref}$

- *n* rate of detected neutron
- n_{max} max. rate at 10% event losses

 n_{ref} rate in fast reference detector corrected for dead time

Measurements

Measurements

sh-time = 0.25 μs, b-time = 0.5 μs, n ≈ 95 kHz

PSND2018, Jülich, 16.05.2018 - 16

- scintillation decay curves of ZnS and ZnO based neutron scintillators were measured
- count rate capability of a ZnS:⁶LiF pixelated neutron scintillation detection unit was measured
- a maximum count rate of ~50 kHz (@10 event loss) could be achieved, still allowing a trigger efficiency above 80 %
- further studies and full characterisation, including e.g. γ-sensitivity, are still needed for high rate case

Teams and Support

detector

- Alexey Stoykov
- Jean-Baptiste Mosset
- M. H.
- Dieter Fahrni
- Andi Hofer

electronics

- Urs Greuter
- Alexey Gromov
- Nick Schlumpf

POLDI beamline scientist

Tobias Panzner

Financial Support

- CH SNF 206021-139106
- CH SERI 15.0227 (EU Grant Agreement No. 654000)

Hildebrandt , PSI