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Micromegas concept

_ Drift field
Two-region gaseous detector typical 1022 Vicm 1
separated by a Micromesh
Amplification field

' i typical 1048 V
* Conversion region ypica \jcm

> Primary ionization
» Charge drift towards A.R. Amplification

gap: 50-100 um
* Amplification region
> Charge multiplication MICROMEsh GAseous Structure

> Readout layout Giomataris, Charpak (1996)
Strips (1/2 D) Y. Giomataris et al., NIM A 376 (.1996) 29
Pixels In 1st Micromegas

. . Fishing line spacers have been used
- Very strong and uniform electric
field

* metallic micromesh (typical pitch
50um)

* sustained by 50-100 um pillars
* simplicity

* single stage of amplification
* fast and natural ion collection

* discharges non destructive



MICROMEGAS description + technologies (i)




MICROMEGAS description + technologies (ii)




Neutron detection with Micromegas

Due to the so-called 3He shortage crisis,
alternative converters. Thin films of °

detected in gas proportional cou

Neutron detection = neutron to charge converter

> Solid converter: thin layers deposited on the drift or mesh electrode (1°B,

oB,C, 6Li, 6LiF, U, actinides...)
v' Sample availability & handling
v’ Efficiency estimation

X Limitation on sample thickness from fragment range
= limited efficiency

X Not easy to record all fragments

> Detector gas (3He, BF;...)
v" Record all fragments

Neutron detection with
high efficiency (~50%):
> 3He crisis

> Increased demand

for neutron detectors
=>Science

=2>Homeland security
=>|ndustry

Micromegas for neutrons

v" No energy loss for fragments = reaction kinematics

v" No limitation on the size = high efficiency

X Gas availability

¥ Handling (highly toxic or radioactive gasses) >

> Neutron elastic scattering

> gas (H, He) >

> solid (paraffin etc.) >
v' Availability >
v' High energies
X Efficiency estimation & reaction kinematics

Thomas Papaevangelou

Micro-Pattern Gaseous Detector
(gain, fast timing, high rate,
granularity, radiation hardness,
simplicity...)

Low mass budget
Transparent to neutrons

Large area detectors cheap &
robust




Ingredients to build a simple counter

Thomas Papaevangelou

in Boron depos
h B powder @ SEDI
, Sputtering @ DRT (Ph.
h DRT & Linkoping Unive

ng as a simple, port
LICORNE)

Microbulk glued
on a metallic plate

10B |ayer (thick!) deposited
on the inner part of the
chamber

The 1°B layer is the less
trivial part to build
> Material availability

|24 > Deposition methode
v Sputtering
v Evaporation
v Electrodeposition
v

o
Teflon / kapton
joint
-
Gas tubes



The Schlumberger neutron counter

Thomas Papaevangelou



Performance

> 2 High voltages (+300V & +500V) for
the mesh and the anode

> Single readout channel ) )
» Operation in sealed mode (since July) - Sim. via
no gain loss FLUKA MC

> Measured efficiency: 4.3 -5 %
(reference 3He tube)

Sim. via
FLUKA MC

DATA

Thomas Papaevangelou



The multilayer concept (i)

10
4/ B

Micromegas
rocrom

10B on a
= Ni mesh

q/
““Micromegas
licrom

................................................. <&
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The multilayer concept (ii)

» One module can

Thomas Papaevangelou
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Concept
» Use developments of Micromegas
technology in Saclay to
demonstrate
the feasibility of a large high-
efficiency neutron detector with

several *’B,C thin layers mounted

inside the gas volume.

* Built a single detector unit
prototype with overall dimension of
~ 15 x 15 cm? and a flexibility of

modifying the number of layers of

l°B4C: neutron converters.

e Evaluate bulk (NMI3) / microbulk
(SINE2020) technologies for the
construction of large sizes
detectors made a mosaic of such

detectors.

/

\

detector
Thermal neutrons
Cathode V3 =V2+ F"IE*D V3
B,C
Ni meshes with tmm- V3= V=10V
B ayers both sides
) V2 = V1 + Fm2E*D V2
=E=E=====F=====5
n=3
E=-10 V/Imm
1mm
V1 = VO + FEYE*D 1 V1
- e e e e = =
Imm
~MiCromegas amplification stage
— Anode
]

Micromegas neutron \




The NMI3 prototype

> Bul
>

Thomas Papaevangelou
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Detection efficiency - FLUKA MC (i)

Simplified geometry of a Micromegas prototype

2 mesh of Nickel: 4 um
3 Gas layers CFs4: 1-2-5 mm
5 layers of converter B4C: 2 um
Neutron beam of 25 meV pencil-like parallel to z-axis
Energy Deposition is scored at the gas volumes
Calculated efficiency of detection : 19.6%

5Cd

000 Entries

Mean
RMS

#

D
-]
—
=.
D
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Perpendicular o0 with 5 x 19B,C layers

3000
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2000

1000
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- - 2 -
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0.00z2
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1.00 -1.25-1.5 - 25|JmBC“‘°°”_

45 deg.

1 -

45 deg.

Detection efficiency - FLUKA MC (ii)

A >50% thermal neutrol
stack of transfe

proper eIectrlc ,/

. 38%

12CIDEI
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Eff. 57.1 %
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using FLU/64 MC
A “2-double 3-mesh detector unit” (28 B,C layers)
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Vdl =-200 V

V)
CF, (100%) » »—r

5mm

Vm=0
Va=735V

Cf-252 source
Total Rate ~ 13.16 Hz

[ Measurements / simulations \

Here the Mesh channel was connected
to ground, the Drift channels through a
filter to a CAEN HV power supply, and
the Anode through a preamplifier (PA) to
a CAEN HV as well. The detector scores
counts from thermal neutrons originated
from the ?°**Cf neutron source. The
detector signal spectrum was
measured using a Multi-Channel
Analyzer program (MCA) to process
detector signals produced by the
detector, measure the pulse height and
obtain the pulse height spectrum, which
is the number of counts as a function of
the MCA channel.

Scint3

scd

Entries 62595
Mean  0.0006871
RMS  0.0004396

20% resolution
E > 20 keV

All
He4
Li7
elg
[T

Sim. via

\ | -ﬂ-_mgué-ﬂ'_m'm;'n'.uéﬁﬂél‘fjf(l"ﬂ{'WéhIﬂl'u&élmm a.002 j
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Data meas
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 detection efficienc

ht), compared to a °l
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5-layer prototype performance

Comparison with commercial 3He
tube:

Count rate {3He/ MM} =5.5
Assuming 3He eff. ~ 95%
2> MM eff ~ 18%

Satisfactory result
but:

> Electron transmission too low
when mesh thickness >> 5 pm

> Mesh deformed during B,C

deposition if thickness << 20
Km

= Difficult to operate with more than
3 layers per unit with large area Ni
meshes

Thomas Papaevangelou
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Alternative 1: Kapton mesh (GEM-type)

12.5 pm Kapton mesh

* double-side coated with 3-4 um Cu — — —
« double-side coated with 1 um Ni Iz
 double-side coated with 1.5 pm B,C I ] ]

AV (10-50 V) applied between the two Cu layers GEM-type kapton mesh

[] electric field strong enough for sufficient
electron transmission

» Small voltage for top layer (< 500 V)

» Small amplification possible to compensate
electron losses (factor 2-3)

v Mesh is cheap and robust
v" Big surfaces possible (1x0.5 mz2)

Thomas Papaevangelou 20



Simulation / box model (garfield-nebem)

V2=-60V Vi=-50V Vm=0

Ne - C, H_(10%)

0)
Box diam = 40 um 6% transparency

Hole diam =40 pm

V2=-60V Vm1=-50V Vm=0 vz=-60V V"‘}lz'fosgv vm =0
Vm2 =-45V me =-

0)
20% transparency 2% transparency

21

Hole diam =40 um
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Data mea
equi
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Microbulk
detector

Framed GEM foil

Naked GEM foil
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B coating at CDT CASCADE Detector Technologies

inside the frame holder for coating (thermal

shield) \

a reused framed GEM after
special cleaning and
treatment of the surface

==> Provide naked
foils before framing

==> Need for GE
(framed or u
as well a
dete




“B,C coating with a PVD sputtering machine at CEA (by M. Pomorski)

Naked GEM foil in a sandwich panel 20

— mesh mask and protected plate —
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2-3 mm
J B4C
H B EEEEE

2-3mm

252Cf Source

No Source
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2-3 BaC
mm ][ BaC
C B OO

2-3 mm

B4C
H B B EEEE
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<

Alternative 2: Microbulk stack

Microbulk is also a Kapton mesh, — T— w— Copper
Cu-coated.

Boron can be deposited on the
Microbulk surface
- double efficiency
* Ni or Au coating needed (7?)
X Same problem from thermal
expansion coefficients
Units can be stacked without
limitation, using only 3 voltages
(same cathode, mesh, anode
voltages)

Kapton

Copper

Unit can be very thin (~1 mm)
Low material budget

Common / independent readout
possible

Ssts trying to deposit
aterial.

The dept » copper doesn’t work,

but on t 2d copper it looks itage of the microbulk detecto
great, e ‘\ | months from the ‘readout pads are supported dir
time the ¢ S done. oport the micromesh. Neutron sca
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SINE2020 Work Program

Original idea :

Move to

* Micro-bulk micromegas — Novel geometry of large scale neutron detector: a
mosaic of micro-bulk micromegas coated with *°B,C.

« Simulations: of first concept by placing 4 back-to-back microbulk micromegas
detector units, the neutron efficiency is 40%

* A prototype was designed and built: a modular 15x15x2 cm® chamber in
which up to 4 kapton micro-bulk micromegas can be stacked

. Tests to deposit B C and/or *°B on Micro-bulk raw material are on going

« Simplified concept : Start testing of a prototype where mesh is replaced by
micro-bulk layer O

32



Outlook

Thomas Papaevangelou



Summary

We are examining possible ways to increase the detection efficiency for thermal

neutrons, using solid neutron-to-charge convertors:

> A Micromegas equipped with several metallic (Ni) thin meshes coated with B,C
In both sides
v' Efficiency improvement as expected by the simulations
X Small electron transmission for thick (robust) meshes

X Deformation & fragility for thin meshes. Problem for large surface detectors

> A Micromegas equipped with GEM-type meshes coated with B,C in both sides
v Good electron transmission. Amplification during transmission easy
v" Small voltages
v Robustness. Large surface detectors possible with low cost

x Deposition of B,C on the foil is difficult. Under study... Tests with 1°B in Cu or B,C in Ni

> A stack of Microbulks coated with B,C multi-layer
thermal

v" Low material, thin detector 2017 J

- Deposition of B,C on the foil is difficult. Under study... Tests with 1°B






Micromegas R&D

People involved at SEDI

Thomas Papaevangelou

+ Fabian Jeanneau, Alan Peyaud, George
Tsiledakis, Paul Serrano, Mariam Kebbiri...
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Micromegas R&D

Close collaboration with the detector Lab

Of De Oliveira, Rui PH-DT-DD 102/R-018
tel: 73745 163931 (Rui.de.Oliveira@cern.ch)

Thomas Papaevangelou

Main building - R1
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https://phonebook.cern.ch/phonebook/#personDetails/?id=385925
https://phonebook.cern.ch/phonebook/#search/?query=PH-DT-DD
https://maps.cern.ch/mapsearch/mapsearch.htm?n=%5B'102/R-018'%5D
tel:+41%2022%2076%2073745
tel:+41%2075%20411%203931
mailto:Rui.de.Oliveira@cern.ch
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Micro Pattern Gaseous Detectors
(MPGD)

Best technology for gaseous detector readout:
Micro Pattern Gaseous Detectors

Micromegas GEMs

* high granularity

* more robust than wires

* no ExB effect 70 -100pm

* fast signal & high gain Tt
J an 9 [ 50-100um

* low ion feedback

* better ageing properties
* easier to manufacture

* lower cost

* big surfaces



Bulk Micromegas technology

pad
Readout pl + h all i
B I
Well established Readout
technique pads

Result of a CERN-Saclay collaboration (2004) Base Material

FR4
Process to encapsulate the mesh on a PCB | ,ination of Vacrel

(mesh = stretched wires) Photo-imageable
polyamide film

Positioning of Mesh Stainless steel

Motivations for using bulk Micromegas
woven mesh

the mesh is held everywhere: ,
. Encapsulatio
> the mesh is held everywhere n

> robustness (closed to dust) Border f
oraer rrame
» can be segmented Development Spacer
> repairable
> large area detectors feasible and Contact to Mesh
robust!

I. Giomataris et.al., NIM A560 (2006) 405
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Bulk Micromegas technology

Bulk Micromegas: The pillars are attached to
a woven mesh and to the readout plane

Typical mesh thickness 30 um, gap 128 um

Uniformity, robustness, lower capacity, easy
fabrication, no support frame, small surrounding
dead region []

v Large area detectors feasible and
robust!

v Curved surfaces
v Mass production!

Mesh thickness & bigger gap: some
disadvantages in special applications:

X Good but limited energy resolution (~18% @
6keV)

X Restrictions on materials

41



Microbulk Micromegas technology

Readout plane + mesh all in one / -

O 0000 A HHHHEH Kapton 50 ym

. H B 1T K&~

Microbulk Technology By I. Giomataris and R. De Oliveira Lower capacitance
== Under development

The pillars are constructed by chemical
processing of a kapton foil, on which the mesh
and the readout plane are attached. Mesh is a
mask for the pillars!

Typical mesh thickness 5 um, gap 50/25 um

v Energy resolution (down to 10% FWHM @ 6
keV)

Low intrinsic background & better particle
recognition

Low mass detector
Very flexible structure
Long termstability

SN X <

x

Higher capacity
Fabrication process complicated
Fragility / mesh can not be replaced

X X

42



43



Micromegas applications

COMPASS NTOF KABES/NA48

1996 2000 2001 2003 2009

—%

Micromegas
Invention CAST T2K
10 7

—

MINOS CLAS12

2014

2015

2018

ATLAS-
NSW

44



Micromegas R&D

Experiments @ CERNs: New detectors &
Continuous improvement

» CAST
Microbulk development

> nTOF
Microbulks for flux measurements
Microbulks for fission measurements
XY-Microbulk

R&D for other projects
> NMI3

» Schlumberger

» Picosecond

Detector technology R&D
Piggyback

Thin mesh

Kapton mesh
XY-Microbulk

Small gap Microbulk
Resistive Micromegas

V VYV YV VYV

Thomas Papaevangelou
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Micromegas and thermal neutrons -back in 2004-

°Li +) n—>H (at2.73 MeV) + « (at 2.05 MeV)

 First tests for thermal neutrons (2D imaging Reaction Q-Value = 4.78 MeV
study) done in 2004 with 6L/ converter, zone
~ 6 X 6 cm?

* Neutron beam ~ 0.025 eV at the Orphée
reactor (CEA-Saclay)

 Measured spatial resolution ~ 160 pm

 Encouraging results BUT: signal losses
(degraded homogeneity)

« Partial end of developments for thermal

neutrons

Now, new technologies are

] u u
Improvements...

“Neutron Imaging ”M, fi‘ |

icromegas Detector”: Micromegas thermal Tomographic
F. Jeanneau et al., IEE |

RANSACTIONS ON NUCLEAR . reconstruction of a 6mm
2, APRIL 2006 gggt{on detector in cable made of 12 #éres

of 0.5mm




Common neutron interactions used for thermal
neutron detectors

O (7Li (at 1.015MeV) + « (at 1.777 MeV),

Reaction OQ-Value =2.792 MeV (to ground state),

Li" (at 0.840 MeV) + « (at 1.470 MeV)
| Reaction Q-Value =2.310 MeV (1Ist excited state)

0B+ s

« Thermal neutron absorption cross-section: 3840 b

°Li+4,n—"H (at 2.73 MeV) + « (at 2.05 MeV)
O Reaction O-Value = 4.78 MeV
« Thermal neutron absorption cross-section: 940 b

47
D.S. McGregor et al. / Nuclear Instruments and Methods in Physics Research A 500 (2003) 272—-308



*“B(n,a)’Li and °Li(n,a)°H

80

1.015 MeV
7 1.470 MeV

Li lon - Particle

70 1

60 1 1.777 MeV
& - Particle
50 -
<

40 1
30 -

20 17840 keV

10 | ?Lifﬂu—/
1

lonization (eV/ Angstrom)

2 3 4 5
Ion Penetration Distance (in microns)

Fig. 5. ""B(n,x)"Li reaction product energy loss in a '"B film as
described by the Brage distribution.

1800 - L4700 MeV
& -Particle

L1015 MeV
i‘/ TL." fon

400 4—-*
200 840 keV

o JLilon_

Transmitted Energy (keV)
=)
=

0 1 2 3 4
lon Penetration Distance,'" B Film
(in microns)

Fig. 6. Energy deposited into the detector 1s simply the origimal
particle energy minus the energy lost through self~absorption.
Shown are the particle energies remaiming from the ""Bn,x) Li
reaction as a functon of transit distance through pure boron.

The average
range for
a 0.840 MeV

7Liionin boron ol L L | |

s 1.6 um
and
the average
range for a
1.47 MeV
alpha
Is 3.6 um.

12

10 - 2.050 MeV
&- Particle

s 1/
2.730 MeV

' ’H lon \

lonization (eV/Angstrom)
(53]

0 20 40 60 80 100 120 140
lon Penetration Distance (in microns)

Fig. 9. “Li(n,2) H reaction product energy loss in a pure °Li
film as described by the Bragg distribution.

3000
2500

| 2.730 MeV
EDDD T .!H If?]'.'

1500 2.050 MeV

o - Particle

~

1000 4

Transmitted Energy (keV)

500+

0 20 40 60 80 100 120 140
Ion Penetration Distance, Pure °Li Film
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Fig. 10. Energy deposited into the detector is the original 48
particle energy minus the energy lost through self-absorption.

Shown are the particle energies remaining from the °Li(n,x)"H

reaction as a function of transit distance through pure Li.
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